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Abstract

Conventional research on educational effects typically either employs a “years
of schooling” measure of education, or dichotomizes attainment as a point-in-time
treatment. Nevertheless, such a conceptualization of education is at odds with the
sequential process by which individuals make educational transitions. In this paper,
I propose a causal mediation framework for the study of educational effects on out-
comes such as earnings. The framework considers the effect of a given educational
transition as operating indirectly, via progression through subsequent transitions, as
well as directly, net of these transitions. I demonstrate that the average treatment
effect (ATE) of education can be additively decomposed into mutually exclusive com-
ponents that capture these direct and indirect effects. The decomposition has several
special properties which distinguish it from conventional mediation decompositions
of the ATE, properties which facilitate less restrictive identification assumptions as
well as identification of all causal paths in the decomposition. An analysis of the
returns to high school completion in the NLSY97 cohort suggests that the payoff to
a high school degree stems overwhelmingly from its direct labor market returns. Me-
diation via college attendance, completion and graduate school attendance is small
because of individuals’ low counterfactual progression rates through these subsequent
transitions.
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1 Introduction

One of the most resilient social scientific findings across a range of national contexts is the

strong association between educational attainment and a variety of life outcomes, includ-

ing earnings, health, social capital, and family stability (Hout, 2012; Chetty et al., 2023).

Conventionally, researchers have taken one of two approaches to evaluating the social and

economic returns to education: the first employs a “years of schooling” measure of educa-

tional attainment (Angrist and Krueger, 1991, 1992; Kane and Rouse, 1993; Card, 1994;

Ashenfelter and Zimmerman, 1997; Card, 1999, 2001; Angrist and Chen, 2011), while the

second dichotomizes attainment as a point-in-time treatment. This latter approach has

been particularly influential in the study of the impact of postsecondary attainment on

earnings, where the treatment considered is often an indicator for whether an individual

has attended, or graduated from, college (Brand and Xie, 2010; Carneiro et al., 2011; Zim-

merman, 2014; Goodman et al., 2017; Smith et al., 2020; Bleemer, 2022; Mountjoy, 2022).

Despite the important insights this literature has made into establishing the causal ef-

fect of educational attainment on important social and economic outcomes, extant work

has been inattentive to the sequential process by which people make educational transitions

(Mare, 1980).1 At the end of high school, individuals decide whether or not to enroll in col-

lege. Among college enrollees, only 60% receive a BA within six years of initial college entry

(Snyder et al., 2016), with an even lower proportion for low-income students and students of

color (Eller and DiPrete, 2018; Zhou and Pan, 2023). Moreover, amidst higher educational

expansion in the US, college graduates must increasingly choose whether to enter the labor

market or to enroll in post-graduate education. Increasingly, therefore, educational attain-

1I use the term “educational transition” to refer both to vertical transitions (e.g. enrollment at a
secondary or tertiary institution), as well as to the attainment of a qualification at a given level (e.g. high
school graduation or BA completion).
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ment in the US has become a field of multiple levels with sequential transitions, all of which

are independently consequential for individuals’ labor market outcomes, and therefore of

independent scientific interest.

The sequential nature of educational transitions implies that a causal mediation frame-

work can be employed to study the causal paths by which education’s “value-added” occurs.

Specifically, we can consider the first transition in a sequence of educational levels of in-

terest as a treatment variable, A, and subsequent transitions as mediators that “transmit”

the effects of the treatment and of prior transitions, Mk (1 ≤ k ≤ K). For example, if we

are interested in the total effect of high school completion on earnings, we may ask to what

extent this total effect operates indirectly, through the effects of college attendance and

college completion (putative mediators) on earnings, or directly, through alternative causal

pathways. The insight that the total causal effect of education can be decomposed into its

direct and indirect effects opens up a range of important research and policy-oriented ques-

tions. For example, tracing to what extent an early-stage educational intervention boosts

outcomes such as earnings via its promotion of subsequent educational attainment (its in-

direct effects), or via earnings directly, would enable policy-makers to discern what drives

the intervention’s value and to hone subsequent policy (e.g. Hurwitz and Howell, 2014;

Sullivan et al., 2019; Castleman et al., 2020; Bird et al., 2021; Dynarski et al., 2021; Black

et al., 2023; Turner and Gurantz, 2024). Relatedly, if the early intervention’s effects are

heterogeneous across demographic groups, assessing the intervention’s direct and indirect

effects could guide researchers to aspects of the educational experience that either promote

or inhibit upward mobility. Nevertheless, prior empirical approaches are not well-suited

to answering these questions: a “years-of-schooling” approach captures the direct effect of

each additional year of schooling, while the dichotomous approach conflates the direct and
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indirect effects.2

In this article, I introduce a causal mediation framework for analyzing the effects of

educational transitions. For the setting of K (≥ 1) monotonic mediators, I develop a

general formula that decomposes the total effect of any level of education into K + 1

monotonic path-specific effects (MPSEs): a direct effect net of K subsequent educational

transitions, reflecting the path A → Y , and K mutually exclusive “continuation” or gross

effects, reflecting the paths A → M1 → Y , A → M1 → M2 → Y , and A → M1 · · · →

MK → Y . Most importantly, this decomposition exploits a unique characteristic of this

empirical setting, in which mediators are characterized by “monotonicity”: that is, where

an individual’s potential k + 1 mediator value is deterministically zero if that individual’s

kth mediator value is 0. The resultant decomposition of the ATE into K + 1 monotonic

path-specific effects (MPSEs) can be non-parametrically identified under the assumption of

sequential ignorability, which allows for the effect of each educational level to be confounded

by a distinct set of (observed) intermediate covariates. I introduce several estimation

strategies for my proposed decomposition, including a simple linear model-based regression-

with-residuals (RWR) procedure, and a non-parametric estimation strategy based on the

efficient influence functions (EIFs) of the target parameters (see Chernozhukov et al., 2017;

Kennedy, 2022).

This study makes three main contributions. Within the realm of education research, I

draw on important work by Heckman et al. (2018), who present a similar decomposition

of the effect of schooling over the early life course, but differs in two important respects.

First, I provide nonparametric definitions, identification results, and estimation strategies

2A further strand of literature, especially prominent in labor economics, explores labor market returns
to horizontal aspects of differentiation within a given educational level (e.g. college selectivity, as well as
specific colleges) or college types (e.g. Cohodes and Goodman, 2014; Goodman et al., 2017; Mountjoy and
Hickman, 2021; Chetty et al., 2023; Ciocca-Eller, 2023). While my proposed framework prioritizes the
effects of different levels of education, I discuss in my concluding remarks how the framework could be
extended to accommodate multivariate mediators.
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for decomposing the total effect of schooling through its direct and indirect components.

Second, my decomposition accommodates the presence of a distinct set of observed inter-

mediate confounders for each transition. While one limitation of my approach is that I

assume away the presence of unobserved confounders for each transition, I propose a sensi-

tivity analysis that assesses the robustness of the results to unobserved confounding, under

a set of simplifying assumptions.

More broadly, my framework speaks to the burgeoning field of causal mediation analysis

in the social, economic, and health sciences, targeted at assessing the causal pathways by

which a treatment affects an outcome. While prior literature overwhelmingly focuses on

single-mediator decompositions of the ATE, a growing body of work examines mediation

estimands in settings with multiple mediators (Avin et al., 2005; Albert and Nelson, 2011;

VanderWeele and Vansteelandt, 2014; Lin and VanderWeele, 2017; Miles et al., 2017; Steen

et al., 2017; Vansteelandt and Daniel, 2017; Miles et al., 2020). In particular, in the case

of two causally ordered mediators, Daniel et al. (2015) show that the ATE can be decom-

posed into multiple path-specific effects (PSEs), and outline the assumptions under which

some of these effects are identified. Most recently, Zhou (2022b) generalized this frame-

work to the case of K mediators, establishing a set of identifiable PSEs and introducing

several regression-based, weighting, and semiparametric efficient estimators. I extend this

literature by examining a special empirical setting where the mediators are monotonic.

Compared with traditional mediation-based decompositions, monotonicity faciliates PSE

identification under weaker identification assumptions, enables identification of all of the

causal paths in question, as opposed to just a strict subset of them, and further permits

a finer-grained decomposition. The general decomposition also extends previous literature

on mediation under monotonicity which has focused exclusively on the case of a single
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mediator (e.g. Zhou, 2022a).

Finally, I also contribute to a growing parallel literature that proposes a range of non-

parametric, and semi-parametric efficient estimators for alternative mediation estimands,

based on the efficient influence functions (EIFs) of the causal quantities of interest (e.g.

Miles et al., 2020; Farbmacher et al., 2022; Zhou, 2022b), as well as to related closely-

related work that proposes semi-parametric efficient estimators for dynamic treatment ef-

fects (Lewis and Syrgkanis, 2020; Viviano and Bradic, 2021; Bodory et al., 2022).

In the following sections, I first introduce the decomposition for the case of a single

intermediate educational transition, before discussing the general case of K intermediate

transitions and its identification under the assumption of sequential ignorability (Section

2). In Section 3, I introduce a semiparametric estimation strategy for estimating the

proposed decomposition, and in Section 4, I illustrate the proposed framework and methods

using data from the National Longitudinal Survey of Youth (NLSY97) cohort. Section 5

concludes.

2 Monotonic Path-Specific Effects

2.1 A Single Intermediate Transition

I first consider the case of a single intermediate educational transition (monotonic media-

tor). Suppressing subscripts i, let A denote an indicator for high school graduation (the

initial educational transition), M1, an indicator for college attendance (a monotonic me-

diator or transition), and Y , a binary or continuous outcome of interest such as earnings.

A single-transition decomposition thus assesses the educational sequence A → M → Y :

high school graduation→college attendance→earnings. In this way, I treat college atten-
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dance as a mediator of the total effect of high school graduation on earnings, in relation to

which the total effect of high school graduation can be decomposed into an indirect effect

(that “flows through” college attendance), and a direct effect (net of college attendance).

Following Heckman et al. (2018), I refer to this latter term as the “continuation” value of

educational transition A.

Using potential outcomes notation, let M(a) denote an individual’s potential value of

the mediator if their treatment status were set to a, and let Y (a,m) denote that individual’s

potential outcome if their treatment and mediator statuses were set to a andm, respectively.

I assume, as I formalize in the following section, that sequential transitions are characterized

by monotonicity; here, this means that individuals who do not complete high school cannot

attend college, or M(0) = 0. This sequential nature of educational transitions therefore

implies the following set potential outcomes: {Y (1), Y (0), Y (1, 0), Y (0), Y (1, 1)}. Further,

by the composition assumption, Y (0) = Y (0,M(0) = Y (0, 0), and

Y (1) = Y (1, 0) +M(1)[Y (1, 1)− Y (1, 0)].

Thus, the individual total effect of A on Y can be decomposed as

Y (1)− Y (0) = Y (1, 0)− Y (0, 0) +M(1)[Y (1, 1)− Y (1, 0)]. (1)

Since these individual-level quantities are unidentified, I focus on their population-level

analogs. Taking the expectation of Equation 1, we obtain the following decomposition of
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the ATE (see Zhou, 2022a):

ATE = E[Y (1)− Y (0)]

= E[Y (1, 0)− Y (0, 0)] + E[M(1)]E[Y (1, 1)− Y (1, 0)] + cov[M(1), Y (1, 1)− Y (1, 0)]

(2)

= ∆0︸︷︷︸
A→Y

+π1∆1 + η1︸ ︷︷ ︸
A→M→Y

. (3)

Here, ∆0 and ∆1 denote the direct effects of the first and intermediate transitions on the

outcome, A→ Y andM → Y , respectively, π1 denotes the total effect of the first transition

on the intermediate transition A→M , and η1 denotes the covariance between the effect of

the initial transition on completion of the second and the effect of the second transition on

Y . Specifically, η1 is positive if those who would attend college given high school completion

(i.e., M(1) = 1) benefit more from college attendance in terms of their later earnings (i.e.,

have a larger Y (1, 1)−Y (1, 0)) than those who do not (i.e., M(1) = 0), and negative if the

opposite is true. Meanwhile, the composite term (π1∆1 + η1) captures the average indirect

effect of the treatment via the intermediate transition (A→M → Y ), comprising the sum

of (i) the probability of college enrollment if an individual graduated high school, multiplied

by the direct of college enrollment, and (ii) the covariance between college enrollment and

its direct effect on earnings.

2.2 Generalization to K Intermediate Transitions

I now generalize the approach introduced in the preceding section to the case of K interme-

diate transitions. As previously, I denote the treatment (“initial transition”) of high school

graduation by A, and use M1, . . .MK to refer to the K subsequent transitions of interest
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(“intermediate transitions”), where I assume that all ofM1, . . . ,MK are binary and that for

any i < j, Mi temporally precedes Mj. For instance, we may wish to decompose the total

effect of high school completion on earnings via college attendance (M1), college completion

(M2) and graduate school attendance (M3). Let an overbar denote a vector of variables,

such that Mk = (M1,M2, . . .Mk) and 1k = (A = 1,M1 = 1, . . . ,Mk−1 = 1). Further,

let [K] denote the set {0, 1, . . . , K}. In addition, I denote by X a vector of pretreatment

confounders of the effect of (A,Mk) on (Mk+1, Y ), and by Zk = (Z1, . . . Zk) a vector of

intermediate confounders that may confound the causal effect of Mk on (Mk+1, Y ). Using

potential outcomes notation, Y (1k,mk) thus denotes an individual’s potential earnings if

they completed, possibly contrary to fact, the treatment in addition to k − 1 intermediate

transitions, and then either completed (mk = 1) or did not complete (mk = 0) the kth

intermediate transition. Similarly, Mk+1(1k+1) denotes an individual’s potential value of

the k + 1th intermediate transition were that individual to complete the treatment as well

as k prior intermediate transitions. I invoke the following constraint on units’ potential

transition values:

Assumption 1. Monotonicity: Mk+1(Mk = 0) = 0∀k ∈ [K − 1],M0 ≡ A.

Informally, Assumption 1 (monotonicity) states that an individual’s potential k + 1th

transition value is deterministically 0 if that individual fails to complete the prior (kth)

transition. It is analogous to a one-sided non-compliance assumption within an instrumen-

tal variables (IV) framework, which rules out an “always-takers” principal stratum. We

can then use this assumption to decompose the ATE of A on Y , which I denote by τ0.

Specifically, let τk denote the gross effect of the kth mediator on Y , i.e.,

τk = E[Y (1k+1)− Y (1k, 0)],
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let ∆0 denote the direct effect of A on Y , and let ∆k denote the direct effect of the kth

mediator on Y , i.e.,

∆k = E[Y (1k+1, 0)− Y (1k, 0)].

To explicate my approach, note that the gross effect of the kth mediator, τk, includes

not only the direct effect Mk → Y , net of subsequent educational transitions ∆k), but

also the indirect effects of Mk via subsequent transitions (M ⇝ Y , where a squiggly arrow

denotes a combination of multiple paths). This insight motivates us to further decompose

τ into its direct and indirect components. Under the composition assumption, τk can be

decomposed as

τk = ∆k + πk+1τk+1 + ηk+1, (4)

where

πk+1 = E[Mk+1(1k+1)],

ηk+1 = cov[Mk+1(1k+1), Y (1k+2)− Y (1k+1, 0)].

For k = 1, . . . , K − 1, iteratively substituting equation 4 into the corresponding expres-

sion for τk−1 yields

τ0 = ∆0︸︷︷︸
A→Y

+
K∑
k=1

(Πk
j=1πj)∆k + (Πk−1

j=1πj)ηk︸ ︷︷ ︸
θk≜A→M1...→Mk→Y

, (5)

where ∆K = τK , i.e. ∆K is a gross or continuation effect, since this latter path is a

composite one that contains all residual paths omitted in the decomposition (i.e., through

educational transitions subsequent to K, if they exist). Thus, the θk terms capture how

much of the total effect of high school completion flows through each intermediate transition

considered (i.e., via college attendance, via college completion, and via graduate school
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attendance), while ∆0 captures that portion of the total effect that operates directly, net

of the K intermediate transitions considered.

2.3 Identification

To identify the causal effects of interest, I rely on a series of sequential ignorability as-

sumptions. While most closely associated with the dynamic treatment effects literature,

which rely on observing a complete set of time-varying confounders in order to identify

longitudinal effects (see e.g. Lewis and Syrgkanis, 2020; Viviano and Bradic, 2021; Bodory

et al., 2022), these assumptions can be transferred to a mediation context, given the fact

that the mediators of interest are all causally ordered. As will be discussed in the following

section, sequential ignorability identification assumptions are distinct from - and in fact

weaker than - the assumptions typically employed in studies of causal mediation.

Before proceeding, I introduce the following shorthands. Let M0 ≜ A and Mk = ∅∀k <

0. In order to estimate the decomposition shown in Equation 5, it suffices to identify the

expectation of two types of composite counterfactuals (Y (1k,mk+1) and Mk+1(1k+1)), as

well as covariance terms of the form cov[Mk+1(1k+1), Y (1k+2)− Y (1k+1, 0)] ∀k ∈ [K − 1]. I

invoke the following three assumptions:

Assumption 2. Consistency: for any unit, if A = a, Y = Y (a); if (A,Mk) = {1k,mk},

then Y = Y (1k,mk) ∀k ∈ [K], and if (A,Mk) = 1k+1, then Mk+1 = Mk+1(1k+1)∀mk+1 ∈

{0, 1},∀k ∈ [K − 1].

Assumption 3. Sequential ignorability: (M(1), Y (a)) ⊥⊥ A|X; Y (1k,mk) ⊥⊥Mk|X,Zk,Mk−1

and Mk+1(1k+1) ⊥⊥Mk|X,Zk,Mk−1,∀k ∈ {1, . . . , K},∀mk ∈ {0, 1},M0 ≡ A.

Assumption 4. Positivity: pA|X(a|x) > ϵ > 0, pMk|X,A,Zk,Mk−1
(mk|x, a, zk,mk−1) > ϵ > 0

∀k ∈ [K].
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Assumption 2 (consistency) states that a unit’s observed outcome equals its potential

outcome under a given treatment sequence. Assumption 3 (sequential ignorability) is the

no unmeasured confounding assumption for the treatment and all mediators. It is con-

sidered plausible when sufficient pre-treatment and intermediate covariates (X,ZK) are

collected. Finally, Assumption 4 (positivity) requires that treatment and mediator assign-

ment is not deterministic. Under Assumptions 2-4, E[Y (1k,mk)] and E[Mk+1(1k+1)] are

identified, respectively, as

E[Y (1k,mk)] =

∫
x

∫
zk

E[Y |x, zk, 1k,mk]
[ k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x) (6)

E[Mk+1(1k+1)] =

∫
x

∫
zk

E[Mk+1|x, zK , 1k+1]
[ k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x) (7)

For a proof of the above formulas, see Robins (1986). The covariance (ηk) components in

the decomposition are then identified as the “residual” terms such as in Equation 4, which

follows directly from the fact that all other components in these equations are identified.

Thus, for k ∈ {1, . . . K}, I can identify ηk as

ηk = τk−1 −∆k−1 − πkτk.

2.4 A Comparison with Conventional Mediation Analysis with

Multiple Causally Ordered Mediators

The above decomposition has an analog in the context of a mediation–based decompo-

sition of the ATE with multiple ordered mediators, but differs from conventional medi-

ation analysis in important ways. To illustrate the differences, consider a binary treat-
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ment, A, an outcome of interest, Y , and a vector of pretreatment covariates, X, and let

M1,M2, . . .MK denote K causally ordered mediators, assuming that for any i < j,Mi

precedes Mj, as above. Moreover, let an overbar denote a vector of variables, so that

M̄k = (M1,M2, . . .Mk),m̄k = (m1,m2, . . .mk), and āk = (a1, a2, . . . ak). Using the po-

tential outcomes notation as above, I can define the following expectation of a nested

counterfactual,

ψaāk ≜ E
[
Y (a, M̄k(āk))

]
,

where M̄k(āk) ≜
(
M̄k−1(āk−1),Mk(ak, M̄k−1(āk−1))

)
,∀k ∈ [K]. Under Pearl’s (2009)

nonparametric structural equation model (NPSEM), Zhou (2022b) demonstrates that the

ATE of A on Y can be decomposed into K + 1 identifiable PSEs corresponding to each of

the causal paths A→ Y and A→Mk ⇝ Y (k ∈ [K]):

ATE = ψ1 − ψ0 = ψ1,0K , − ψ0K+1︸ ︷︷ ︸
A→Y

+
K∑
k=1

(
ψ1k+1,0k+1

− ψ1k,0k+1︸ ︷︷ ︸
A→Mk⇝Y

)
. (8)

This decomposition holds algebraically when Assumption 1 does not hold (i.e., when the

mediators are not monotonic). In contrast, the monotonic characteristic of the proposed

decomposition leads to several important differences. First, the PSE decomposition of

the ATE in general mediation settings is not algebraically unique, and thus the PSEs

defined under alternative decompositions will differ if the effects of the treatment and each

mediator vary across levels of the other mediators. In fact, depending on the order in which

the paths A→ Y and A→Mk ⇝ Y are considered, there are (K+1)! identifiable different

ways of decomposing the ATE; the decomposition shown in Equation 8 is just one such

decomposition. Consider the case of two causally dependent mediators. In this setting, the
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causal pathway A → M2 ⇝ Y can be defined with respect to four different combinations

of levels of the treatment and first mediator: under (i) a = 1 and M1(1), (ii) a = 1 and

M1(0), (iii) a = 0 andM1(1), or (iv) a = 0 andM1(0). By contrast, as a direct consequence

of monotonicity, the MPSE decomposition is the unique PSE decomposition of the ATE.

Second, for general PSE decompositions of the ATE, the set of identifiable decomposi-

tions is merely a small subset of the total number of decompositions that hold algebraically

(see Avin et al., 2005). In particular, the identifiable decomposition does not enable us

to disentangle the mediating effects of Mk that are direct (net of subsequent mediators)

and indirect (through different combinations of subsequent mediators). For example, in

the case of two causally dependent mediators, to assess the mediating role of M1, only the

composite path A→M1 ⇝ Y = (A→M1 → Y )+(A→M1 →M2 → Y ) is identified. By

contrast, mediator monotonicity permits a finer-grained decomposition of the ATE: each

PSE is identified. In the case of two causally dependent mediators, for example, the causal

path A → M2 → Y is zero, and as a result, each of the paths A → Y , A → M1 → Y and

A→M1 →M2 → Y are identifiable. Figure 1 illustrates the causal pathways defined and

identified under the proposed decomposition in the case of two monotonic mediators.

Finally, the sequential ignorability assumption required to identify the MPSE decom-

position is weaker than those required to identify a generic PSE decomposition of the ATE.

Specifically, the latter requires Pearl’s (2009) non-parametric structural equation model

(NPSEM), which stipulates that (Mk+1 (ak+1, m̄k) , . . .MK (aK , m̄K−1) , Y (aK+1, m̄K)) ⊥

⊥ Mk

(
ak, m̄

∗
k−1

)
| X,A, M̄k−1,∀k ∈ [K]. This assumption, sometimes referred to as the

“cross-world” independence assumption, is stronger than the sequential ignorability as-

sumption (3) required to identify the MPSE decomposition since it rules out the existence

of confounders of the mediators, be they observed or unobserved. By contrast, the MPSE
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decomposition identification results accommodate observed intermediate confounding with-

out altering the substance of the decomposition.

Figure 1: Causal Relationships with Two Monotonic Mediators Shown in a Directed Acyclic Graph
(DAG) and the 3 Monotonic Path Specific Effects (MPSEs). A denotes an initial transition of interest, Y ,
an outcome, and M1 and M2 are two causally ordered, monotonic mediators. The set (X,Z1, Z2) captures
pre-treatment and intermediate confounders.

3 Semiparametric, EIF-Based Estimation

The identification results outlined above suggest that the proposed decomposition can

be estimated via several approaches, including outcome-based modeling, models for the

treatment and mediators via inverse probability weighting, as well as doubly robust ap-

proaches. Parametric procedures are attractive because of their conceptual simplicity and

ease of implementation: in Supplementary Material A I show how, under a set of linear

models for the outcome and mediators, the θk components in Equation 5 can be read off

from simple functions of coefficients in these linear models. However when X and ZK are

high-dimensional, parametric estimators which require a user-defined specification of the

data-generating process may suffer biases resulting from model misspecification. In order
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to reduce model dependency, in this section I provide a nonparametric estimation approach

which draws on a debiased machine learning (DML) approach. My DML approach is char-

acterized by two components: first, the use of a Neyman orthogonal estimating equation

based on the efficient influence function (EIF) for the target parameters, which makes es-

timates of the parameter “locally robust” to estimates of the nuisance functions; second,

the use of a K-fold cross-fitting algorithm (Chernozhukov et al., 2017).

Let O = (X,A,ZK ,MK , Y ) denote the observed data, and P a nonparametric model

over O wherein all laws satisfy the positivity assumption described in Section 2. Before

proceeding, I define the following auxiliary functions, as introduced in Section 2: ψkmk
≜

E[Y (1k,mk)] and ϕk ≜ E[Mk+1(1k+1)], for all k ∈ [K],M0 ≜ A. Using the identification

results given in Section 2, ψkmk
can be written in terms of expectations of observed data:

ψkmk
= EXEZ1|X,1 . . .EZk|X,Zk−1,1k

E[Y |X,Zk, 1k,mk].

For each j ∈ [k], we can thus define µk
jmk

(
X, Z̄k

)
iteratively as

µk
kmk

(
X, Z̄k

)
≜ E

[
Y | X, Z̄k, 1k,mk

]
,

µk
jmk

(
X, Z̄j

)
≜ E

[
µk
j+1mk

(
X, Z̄j+1

)
| X, Z̄j, 1j+1

]
∀j ∈ [k − 1].

Further, let πkmk

(
X,Zk

)
≜ Pr[Mk = mk | X,Zk, 1k]∀k ∈ [K], and π01

(
X
)
≜ Pr[A =

1|X]. The efficient influence function (EIF) of ψkmk
is closely related to the EIF for the

g-formula, and can be written as

ψkmk
(O) =

k+1∑
j=0

φj(O),
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where

φ0(O) = µk
0mk

(X)− ψkmk

φj(O) =
A

π01
(
X
) (j−1∏

l=1

Ml

πl1
(
X,Z l

)) (µk
jmk

(
X,Zj

)
− µk

j−1mk

(
X, Z̄j−1

))
, j ∈ {1 . . . , k}

φk+1(O) =
A

π01
(
X
) ( I(Mk = mk)

πkmk

(
X,Zk

) k−1∏
k=1

Ml

πl1
(
X,Z l

)) (Y − µk
kmk

(
X, Z̄k

))
.

For a proof, see Rotnitzky et al. (2017). The semiparametric efficiency bound for any

asymptotically linear estimator of ψkmk
in P is therefore E[

(
φkmk

(O)
)2
]. The EIF moti-

vates an EIF-based estimator for ψkmk
, obtained by solving the empirical moment condition

Pn[φkmk
(O; η̂)] = 0, where Pn[·] denotes an empirical average, and where φkmk

(O; η̂) de-

notes the estimated EIF, evaluated using plug-in estimators for the nuisance functions.

Specifically,

ψ̂eif
kmk

= Pn

[
A

π̂01
(
X
) ( I(Mk = mk)

π̂kmk

(
X,Zk

) k−1∏
k=1

Ml

π̂l1
(
X,Z l

)) (Y − µ̂k
kmk

(
X, Z̄k

))
+

k∑
j=1

A

π̂01
(
X
) (j−1∏

l=1

Ml

π̂l1
(
X,Z l

)) (µ̂k
jmk

(
X,Zj

)
− µ̂k

j−1mk

(
X, Z̄j−1

))
+ µ̂k

0mk
(X)

]
.

(9)

A similar EIF-based estimator can be used for ϕk to estimate the πk terms in Equa-

tion 5. This estimator is based on the following nuisance functions for estimation (see

Supplementary Material I for details):
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γk
(
X, Z̄k

)
≜ E

[
Mk+1 | X, Z̄k, 1k+1

]
,

γj
(
X, Z̄j

)
≜ E

[
γj+1

(
X, Z̄j+1

)
| X, Z̄k, 1j+1

]
∀j ∈ [k − 1].

Next, following Kennedy (2022, p. 15), let IF : Ψ → L2(P) denote the operator mapping

the functionals {∆k, πk, ηk} : P → R, ∀ ∈ [K] to their respective influence functions

under the nonparametric model P . Because the (∆k, τk) components of the decomposition

are linear in ψkmk
, by linearity of the EIF, (IF(∆k), IF(τk)) can be expressed as linear

combinations of φkmk
(O). In particular, IF(τk) = φ(k+1)1(O) − φk,0(O) and IF(∆k) =

φ(k+1)0(O)−φk,0(O). The EIFs of ηk and θk, ∀k ∈ [K] under P are derived as in Proposition

1:

Proposition 1. The EIFs of ηk, θk ∀k ∈ [1, . . . , K] under P are given, respectively, by

IF(ηk) = IF(τk−1)− IF(∆k−1)− τkIF(πk)− πkIF(τk),

IF(θk) = IF(∆k)
k∏

j=1

πj +∆k

k∑
j=1

IF(πj)
k∏

l=1
l ̸=j

πl + IF(ηk)
k−1∏
j=1

πj + ηk

k−1∑
j=1

IF(πj)
k−1∏
l=1
l ̸=j

πl,

for k ∈ {1, . . . K}, with θ0 = ∆0, and where RIF(ϕ) = IF(ϕ)+ϕ, denotes the recentered

EIF of a parameter (about the truth). Their corresponding EIF-based estimators are (see

Supplementary Material I for derivations):
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η̂eifk = R̂IF(τk−1)− R̂IF(∆k−1)− τ̂kR̂IF(πk)− π̂kR̂IF(τk) + π̂kτ̂k,

θ̂eifk = R̂IF(∆k)
k∏

j=1

π̂j + ∆̂k

k∑
j=1

R̂IF(πj)
k∏

l=1
l ̸=j

π̂l + R̂IF(ηk)
k−1∏
j=1

π̂j + η̂kR̂IF(πj)
k−1∏
l=1
l ̸=j

π̂l

− k∆̂k

k∏
j=1

π̂j − (k − 1)η̂k

k−1∏
j=1

π̂j.

where R̂IF(ϕ) = ÎF(ϕ) + ϕ, and ÎF(ϕ) denotes the influence function of a parameter

evaluated at estimates of its component nuisance functions (see Supplementary Material I

for derivations).

When machine learning estimators are used to compute the nuisance functions, in or-

der to ensure the convergence rates outlined in Proposition 2 below, one could assume

Donsker-type conditions for the nuisance function estimators, which restricts the set of

estimators available to use. Alternatively, to expand the class of estimators that can be

used for estimating the nuisance functions, sample-splitting can be used. In particular,

Chernozhukov et al. (2017) suggest a “cross-fitting” procedure, which comprises the fol-

lowing steps: (1) Randomly split data into J folds: {S1, ...SJ}; (2) For each fold Sj, use the

remaining (j − 1) folds (training sample) to fit a flexible machine-learning model for each

of the nuisance functions involved in the estimating equations; (3) For each observation in

j (estimation sample), use estimates of the above models to construct a set of estimated

RIF functions for ∆k∀k ∈ {0, . . . , K − 1}, and for (πk, τk, ηk, θk)∀k ∈ [K]; (4) Compute an

estimate of the decomposition components by averaging the estimated RIF functions across

all subsamples S1 through SJ . When all nuisance functions are estimated via data-adaptive

methods and cross-fitting, the semiparametric efficiency of θrEIFk is given in the following

proposition:
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Proposition 2. Semiparametric efficiency. Under Assumption 4, and under suitable

regularity conditions (e.g. Chernozhukov et al., 2018), then θ̂eifk is semiparametric effi-

cient if
∑k+1

j=k

[∑j
l=0Rn

(
π̂l1)Rn

(
µ̂j
l0)

]
+
∑k−1

j=0

[
Rn

(
π̂j1)Rn

(
µ̂k−1
j0 ) + Rn

(
π̂j1)Rn

(
µ̂k−1
j1 )

]
+∑k

j=0

[∑j
l=0Rn

(
π̂l1)Rn

(
γ̂jl )

]
= o(n−1/2), where Rn

(
·
)
denotes a mapping from a nuisance

function to its L2(P ) convergence rate, and where µ̂K+1
l0 ≜ µ̂K

l1 .

To gain some intuition for the result in Proposition 2, we can focus on θ1 = π1∆1 + η1,

i.e., the MPSE through M1 when K = 1. Note that estimation of θ1 = π1∆1 + η1 re-

quires estimating the following decomposition components: (π1,∆1, τ0,,∆0, τ1). To estimate

these components, it suffices to estimate the following quantities: (ϕ1, ψ01, ψ00, ψ10, ψ11).

In order for θ̂eif1 to be semiparametric efficient, we require that the estimators employed

for the set (ϕ1, ψ01, ψ00, ψ10, ψ11), i.e., (ϕ̂
eif
1 , ψ̂

eif
01 , ψ̂

eif
00 , ψ̂

eif
10 , ψ̂

eif
11 ), are themselves semipara-

metric efficient. Thus, a sufficient (but not necessary) condition in order for θ̂eif1 to ob-

tain the semiparametric efficiency bound is if, for any two nuisance functions involved in

(ϕ̂eif
1 , ψ̂

eif
01 , ψ̂

eif
00 , ψ̂

eif
10 , ψ̂

eif
11 ), the product of their convergence rates is o(n

−1/2). In this way, θ̂eif1

will obtain the semiparametric efficiency bound if all of its constituent nuisance functions

converge at a rate faster than n−1/4 (although it will also obtain the efficiency bound under

a variety of alternative conditions).

When data-adaptive methods are used to estimated the nuisance functions, inference

on all components can be conducted via the variance of the empirical analog of the EIF, i.e.

Pn[
(
ψ̂EIF
kmk

)2
]/n. For example, inference on τ1 can be conducted by estimating Pn[

(
ψ̂EIF
11 −

ψ̂EIF
10

)2
]/n.
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4 Empirical Analysis

To illustrate my approach empirically, I draw on data from the National Longitudinal

Survey of Youth 1997 (NLSY97). I parse out the direct effect of high school graduation

on adult earnings and its indirect or continuation effects via (i) college attendance, (ii)

college graduation, and (iii) graduate school attendance. My analytic sample comprises

N = 7, 305 respondents.

I construct four types of variables: educational transitions, adult earnings, a set of

confounders for the effect of high school graduation on subsequent transitions and earn-

ings, and a single set of intermediate confounders for the effect of college completion on

subsequent transitions and earnings. My educational transition variables contain a binary

treatment denoting whether a respondent had graduated high school by age 22, and three

binary mediators denoting whether the respondent had attended a 4-year college by age

22, whether the respondent had received a BA degree by age 29, and whether the respon-

dent had enrolled in a graduate level program by age 29, respectively. I assume that all

individuals who make a given educational transition have made all previous educational

transitions. Thus, by construction, my coding strategy disallows for cases which violate the

monotonicity assumption.3 My outcome of interest is logged average annual earnings at

ages 32-36, which I define to be the (logged) average of a respondent’s self-reported wage,

salary income, and business income. Earnings are adjusted for inflation to 2023 dollars us-

ing the personal consumption expenditures (PCE) index. After dropping respondents with

missing earnings information, I accommodate those with zero earnings by adding a small

3Assuming away cases in which an individual makes a particular educational transition without having
made all previous transitions serves as a reasonable approximation to reality. Among the set of individuals
who have non-missing earnings information in the NLSY97 (i.e., those who comprise my analytic sample),
94% of individuals observed to attend graduate school by age 29 also completed a BA by age 29; 93% of
respondents who completed a BA by age 29 had attended a 4-year college by age 22 (6% of those who
completed a BA by age 29 first attended a 4-year college between ages 23 and 26 inclusive), and 99% of
respondents who attended a 4-year college by age 22 had also completed high school.

21



constant of $1, 000 to observed earnings (though in Supplementary Material F, I replicate

my main analyses under alternative definitions of earnings).

In an effort to satisfy the sequential ignorability assumption (Assumption 3), I include a

large array of covariates in my models. This set of covariates is more expansive than those

used in previous, observational studies of returns to education (see in particular Scott-

Clayton and Wen, 2019). In particular, in addition to including information on respondent

demographics (gender, race, ethnicity, age in 1997), and observed pre-college performance

such as overall high school GPA and test score on the Armed Services Vocational Aptitude

Battery (ASVAB), I include detailed information on socioeconomic background. Since my

proposed decomposition also facilitates the inclusion of a distinct set of observed interme-

diate confounders for each transition, I include two postsecondary characteristics (Z) to

adjust for confounders of the effect of BA completion and graduate school attendance on

earnings: field of study and college GPA. To assess the robustness of my main conclusion to

forms of unobserved confounding, in Supplementary Material C, I produce a set of “bias-

corrected” estimates of the decomposition components under certain assumptions about

the nature of the confounding.

A large proportion (just under 50%) of respondents are missing information on covari-

ates X and Z. For my main analyses, I impute missing values on these covariates via

multiple imputation to increase efficiency, but in Supplementary Material E, I replicate

these analyses restricted to the sample of respondents with complete information. This

exercise produces substantively similar results (for covariate means for each of these ana-

lytic samples, see Supplementary Material D). After constructing the analytical sample, I

apply both the DML estimator described in Section 3 as well as a parametric, regression-

with-residuals (RWR) algorithm (described in Supplementary Material A) to implement
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the proposed decomposition. For the DML approach, I estimate all nuisance functions, us-

ing a super learner composed of the Lasso and random forest and, following Chernozhukov

et al. (2017), use five-fold cross-fitting. All weights involved in computing the rEIFs are

censored at their 1st and 99th percentiles. Supplementary Material H gives further details

about the particular models required given my assumed data generation process.

Figure 2 shows my estimates of the average total effect (ATE) on log earnings and its

direct and continuation components under both the DML and RWR procedures. Both

procedures return similar estimates, though deviate in the estimated magnitude of MPSE

θ1, and DML estimates come expectedly with a significantly greater amount of precision.

The first column shows that the estimated ATE of attending high school on log earnings

under DML (RWR) is 0.67 (0.63), which implies an earnings premium of approximately

96%. The next two columns indicate that the vast majority (69% under DML and 75%

under RWR) of the ATE operates directly, i.e. net of college attendance, BA completion

and graduate school attendance (MPSE θ0, A → Y ). Specifically, high school graduates

who do not proceed to college can be expected to earn on average 0.46 (0.47) log earnings

more than high school non-completers under DML (RWR), an earnings premium of 59%.

Under DML, the continuation effects of high school graduation via college attendance

without BA completion (MPSE θ1, A→M1 → Y ) and via BA completion without graduate

school participation (MPSE θ2, A → M1 → M2 → Y ) both mediate roughly 15% of the

ATE, and correspond to an earnings premium of approximately 10%. The RWR estimate

of θ1 is notably lower at 0.03 and is also imprecisely estimated. Under both estimation

procedures, the continuation effect via graduate school attendance (A → M1 → M2 →

M3 → Y ) is very small and fails to reach conventional levels of significance. In sum, the

total effect of high school graduation on earnings is determined overwhelmingly by its direct
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effect on earnings.

Table 1 shows DML and RWR estimates of the various components (the direct effects

(∆k), probabilities (πk) and covariance terms (ηk)) that constitute the continuation effects

θk. Several points are of note. First, the components in the table offer insights into

the economic and educational returns to different educational stages. The direct effects

of each educational transition (∆k) are highly variable: they are largest for high school

graduation and for college completion (both at 0.46 under DML), and lowest for college

attendance and graduate school participation (at 0.2 and 0.12, respectively, under DML).

Note that the payoff to graduate school attendance could be depressed by the fact that

I observe individuals at a maximum age of only 36, if graduate school earnings premia

materialize only much later in the life course. The counterfactual continuation probabilities

(πk) also provide insight into barriers in educational participation. In particular, even if an

individual were to complete high school (possibly contrary to fact), that individual would

have under a 50% chance of continuing to a 4-year college without further intervention to

increase individuals’ college application, admissions and enrollment rates. Further, even if

individuals were to counterfactually both complete high school and attend a 4-year college,

only a very small proportion (π1 ·π2 = 0.24) would be expected to complete their BA degree

without further intervention at the college-level.

Second, the fine-grained nature of the MPSE decomposition enables us to trace the

continuation effects to their constituent components. In particular, while the direct effect

of high school completion is comparable to the direct effect of BA graduation on earnings,

suggesting an earnings premium of 59% relative to college attendance without completion,

the continuation effect via BA completion that it informs (MPSE θ2, A→M1 →M2 → Y )

only mediates a small amount of the overall ATE because because θ2 is approximately
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(plus the small value of η2) equal to ∆2 scaled by the product π1 · π2 = 0.24. In words,

despite the relatively large direct effect of BA completion on earnings, given individuals’ low

counterfactual probability of BA completion, this transition is not an important mediating

pathway of the total effect of high school completion on earnings. The result is that

college attendance without completion mediates high school graduation’s earnings effects

as much as BA completion, despite the fact that college attendance without completion

yields a much smaller earnings return for high school graduates than BA completion without

graduate school attendance does for college enrollees.

One instructive point of comparison for these results are instrumental variable (IV)

estimates of returns to years of schooling, typically estimated in the range of 6% to 12%

(Angrist and Krueger, 1991, 1992; Kane and Rouse, 1993; Card, 1994; Ashenfelter and Zim-

merman, 1997; Angrist and Chen, 2011). While my estimate of the overall return to high

school graduation (τ0) could appear large in this light, several factors could reconcile this

difference. First, τ0 captures the direct and continuation effects of high school completion

(whereas IV estimates of schooling returns capture schooling’s direct effects). Further, τ0

captures the effect of multiple additional years of schooling (as the high school graduates

and high school non-completers that form the comparison group differ by multiple years of

schooling), as opposed to a single year’s additional return. In fact, we can more directly

compare my DML estimate of the direct return to high school graduation (∆0) of 0.46

(corresponding to an earnings premium of 58%) using the fact that, in the NLSY97, high

school non-completers attained on average 3.7 fewer years of schooling than high school

completers. An IV estimate of 12%, for example, would therefore imply an earnings return

to 3.7 additional years of approximately 52% - broadly in line with my result. Still, to assess

the robustness of the above findings to potential violations of Assumption 3 (Sequential
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Ignorability), I implement a sensitivity analysis in Supplementary Material C. Under the

stated assumptions about the pattern of unobserved confounding, my primary finding that

the ATE of high school graduation is overwhelmingly mediated via its direct effect remains

highly robust to unobserved confounding.

Figure 2: Decomposition of the Average Total Effect (ATE) of High School Graduation on Logged
Earnings via Debiased Machine-Learning (DML) and Regression-With-Residuals (RWR).

5 Conclusion

In this article, I have developed a causal mediation framework for analyzing education ef-

fects on earnings. First, I have demonstrated that the total effect of any level of education

can be decomposed into a direct effect and K mutually exclusive “continuation” effects.

All of these effects are identifiable under the assumption of sequential ignorability. Impor-

tantly, this property allows for the effect of each educational transition to be confounded

by a distinct set of observed covariates - a property which allows for weaker identification
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Table 1: Direct Effects (∆k), Probabilities (πk) and Covariance Terms (ηk) Involved in Decomposition
via Debiased Machine-Learning (DML) and Regression-With-Residuals (RWR).

∆0 ∆1 ∆2 ∆3 π1 π2 π3 η1 η2 η3

DML 0.462 0.200 0.463 0.122 0.427 0.554 0.315 0.006 0.005 -0.016

(0.059) (0.034) (0.046) (0.029) (0.009) (0.015) (0.022) (0.007) (0.007) (0.009)

RWR 0.469 0.117 0.491 0.160 0.374 0.515 0.219 -0.016 0.071 0.017

(0.115) (0.082) (0.097) (0.113) (0.015) (0.066) (0.018) (0.007) (0.015) (0.046)

Note: The ∆k parameters capture the average effect of completing the kth mediator but no subsequent
mediator on earnings, relative to completing the k − 1th mediator. For instance, ∆0 denotes the effect of
completing high school (M1) but not attending college nor, under Assumption 1, completing any subsequent
mediators, relative to attending high school but not completing it (M0 ≡ A). The πk terms capture the
average of individuals’ counterfactual completion status of the kth mediator under completion of all prior
mediators M0, . . .Mk−1. For example, π1 denotes individuals’ average counterfactual college attendance,
after - possibly contrary to fact - their completion of high school. Finally, the ηk terms refer to the covariance
between individuals’ own counterfactual completion status of the kth mediator, and their own “gross” effect
of completing the kth mediator on earnings. To recall, the “gross” effect of the kth mediator captures the
effect of completing that mediator, relative to completing only the k−1th mediator, irrespective of whether
that effect operates directly (net of subsequent mediators) or via subsequent transitions. For example, η1
denotes the covariance between each individual’s counterfactual college attendance status and their gross
effect of college attendance on earnings.

conditions compared with conventional mediation-based decompositions of the ATE (Miles

et al., 2017; Zhou, 2022b).

Although my empirical motivation is the estimation of educational returns, the proposed

framework applies widely to a range of demographic and organizational settings charac-

terized by “state dependency” between treatment and mediators. This characteristic is

particularly salient in demographic phenomena, which often involve sequential transitions

over the life course. Certain demographic events are rigid in their monotonicity as a result

of their definition. For example, researchers may be interested in discerning the degree to

which positive effects of marriage on outcomes such as earnings and life satisfaction are

undermined by the negative effects of divorce and separation (and, in turn, their mitigation

via re-marriage) (Kenney, 2004; Sweeney and Phillips, 2004). Divorce can be “attained”

only by individuals who are already married. Similarly, the effect of parenthood on earn-

ings can be seen as operating directly, through the effect of having a first child net of
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subsequent children, as well as operating indirectly through the effects of having multiple

children, transitions which are clearly monotonic in nature. A similar perspective may be

taken in a criminal justice context: the total effect of early-stage police contact (such as

being searched for contraband) on educational and socio-psychological outcomes can be

decomposed into path-specific effects via subsequent arrest and incarceration (Weaver and

Lerman, 2010; Kirk and Sampson, 2013; Sugie and Turney, 2017).

Finally, although in this paper I have considered a decomposition of the average treat-

ment effect for the case of binary monotonic mediators, as shown in Supplementary Ma-

terial G, the framework could straightforwardly be extended to accommodate categorical

transitions. Given the heterogeneity of higher-educational trajectories in the US, such

an extension would prove useful for modeling the relative payoffs to distinct educational

pathways.

SUPPLEMENTARY MATERIAL

Supplementary Materials (To Appear Online): This document (PDF) contains: (A)

details about a parametric, regression-with-residuals estimation procedure; (B) a sim-

ulation study, (C) a sensitivity analysis, (D) further information on sample construc-

tion and the data used, (E-F) results with alternative sample restrictions and defi-

nitions of earnings; (G) a discussion of extending the decomposition to multivalued,

discrete mediators; (H) a description of the EIFs used in the empirical illustration,

and (I) proofs and technical details.
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Supplemental Materials (to appear online)

A Parametric, regression-with-residuals (RWR) esti-

mation

In this section, I propose a linear regression-with-residuals (RWR) approach for the MPSE

decomposition. The approach relies on two steps. The first involves residualizing pre-

treatment confounders with respect to their marginal means, and intermediate on causally

prior confounders, ie., X⊥ ≜ X − E[X], and Z⊥
k ≜ Mk−1

[
Zk − E[Zk | X,Zk−1,Mk−1 = 1]

]
for all k ∈ [K], M0 ≜ A. For now, we are agnostic about the functional form used for

E[Zk | X,Zk−1,Mk−1 = 1]. The second step involves fitting three sets of models. The first is

simply a model for the outcome given pre-treatment covariates and the treatment, namely,

E[Y | X,A] = λ0 + λ1A+ αT
1X

⊥ + αT
2AX

⊥; (10)

The second is a set of models for the outcome given covariates, the treatment and Mk

for all k ∈ [K], i.e.,

E[Y |X,Zk, A,Mk] =βk,0 + ck,0A+
k∑

j=1

βk,jMj + η⊤k,1X
⊥ + ck,1AX

⊥ +
k−1∑
j=1

ηTk,jMjX
⊥ (11)

+
k∑

j=1

γTk,jZ
⊥
j +

k−1∑
j=1

Mj

j∑
l=1

ξ⊤k,k,lZ
⊥
l ,

while the third is a set of models for each mediator given covariates, the treatment,

conditional on the treatment and all prior mediators, i.e., for all k ∈ [K − 1],
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E[Mk+1 | X,Zk, 1k+1] =θk,0 + δTk,1X
⊥ +

k∑
j=1

δTk,j+1Z
⊥
j . (12)

These models differ from conventional linear regression in that (i) pre-treatment variables

are centered around their marginal means, and (ii) post-treatment confounders Zk∀k ∈

{1, . . . K} are centered around their conditional means given all antecedent variables. Under

Assumptions 2-4 in the main text, and assuming that the outcome and mediators are linear

in pre- and post-treatment confounders, the treatment, and prior mediators, and that all

necessary interaction terms have been accounted for, then the ATE τ0 can be obtained from

the linear model E[Y | X,A] as λ1, and coefficients from the models E[Y | X,A,Zk,Mk] and

E[Mk+1 | X,A,Zk,Mk] yield estimates of the components of the decomposition as follows:

τk = E[Y (1k+1)− Y (1k, 0)] = βk,k,∀k ∈ {1, . . . , K},

∆k = E[Y (1k+1, 0k+2)− Y (1k, 0k+1)] = βk+1,k−1, ∀k ∈ {0, . . . , K − 1},

πk+1 = E[Mk+1(1k+1)] = θk,0,∀k ∈ {0, . . . , K − 1}.

I state the RWR estimation procedure formally in the following algorithm:

Algorithm 1. RWR.

1. For each of the baseline confounders, compute X̂⊥ = X − Pn[X], where Pn[·] denotes

empirical average.

2. Fit Ê[Y | X,A] using the linear specification shown above; an estimate of τ0 is given

by λ̂1.

3. For each set of post-treatment confounders Zk, k ∈ {1, . . . , K}, compute Z⊥
k =

Mk−1

[
Zk − E[Zk | X,Zk−1,Mk−1 = 1]

]
where an overbar denotes a vector of vari-
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ables such that Zk = (Z1, . . . , Zk), by fitting a regression of Zk on X and Zk−1 among

units with Mk−1 = 1 and then calculating the residuals.

4. For each k ∈ {1, . . . K}:

(a) compute least squares estimates of equations 11 and 12, using estimates of X⊥

and Z⊥
k .

(b) compute τ̂RWR
k = β̂k,k, ∆̂

RWR
k−1 = β̂k,k−1, and π̂

RWR
k = θ̂k−1,0.

5. Compute the decomposition using τ̂k, ∆̂k and π̂k+1, and estimating the covariance

terms as η̂RWR
k = β̂k−1,k − β̂k,k−1 − β̂k,1θ̂k−1,k, and the continuation effects as θ̂RWR

k =

(Πk
j=1π̂

RWR
j )∆̂RWR

k + (Πk−1
j=1 π̂

RWR
j )η̂RWR

k .

Standard errors and confidence intervals can then be obtained via the non-parametric boot-

strap, or by using their asymptotic analytic variance. Specifically, let θ̂∗k ≜ (β̂k,0, β̂k,1, θk,0)

denote a set of parameters. Under the above models, I have that θ̂∗ = {λ̂1, θ∗1, . . . θ∗K} solves

Pn[g(O; θ̂
∗)] = 0, where g(O; θ∗) is the set of stacked moment conditions with solution θ̂∗.

Under standard regularity conditions (Newey and McFadden, 1994), under correct specifica-

tion of Models 9-11 wherein all residualized quantities are estimated via linear models, the set

θ̂∗ is consistent and asymptotically normal, such that
√
n
(
θ̂∗ − θ∗) converges to a mean-zero

normal distribution with finite variance V = G−1Ω(G−1)⊤, where Ω = E[g(O; θ∗)g(O; θ∗)⊤],

and where G = E[∂g(O;θ∗)
∂θ⊤

]. It follows by a simple application of the Delta Method that

the set γ̂∗k ≜ (τ̂RWR
k , ∆̂RWR

k−1 , π̂
RWR
k , η̂RWR

k , θ̂RWR
k )∀k ∈ [K] is also consistent and asymptotically

normal.
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B A simulation study

In this section, I evaluate the finite-sample performance of my two estimation procedures

via a simulation experiment. Specifically, I compare how the DML estimator proposed in

Section 3 (as well as the parametric, RWR estimator described in Appendix A) perform

under different degrees of misspecification. Without loss of generality, I focus on the single-

mediator setting, and focus on the path-specific effect A→M → Y . I generate simulations

of observed data O = (X1, X2, A, Z,M, Y ) as follows:

U1, U2, U3, U4 ∼ MVN
(
04, I4

)
X1 ∼ N

(
(U1, U2, U3, U4)βX1 , 1

)
X2 ∼ N

(
(U1, U2, U3, U4)βX2 , 1

)
A ∼ Bern

(
logit−1

[
(1, X)βA

])
Z|A = 1 ∼ Bern

(
logit−1

[
(1, X)βZ

])
M |A = 1 ∼ Bern

(
logit−1

[
(1, X, Z)βM

])
M |A = 0 = 0

Y ∼ N
(
(1, A,X,AZ,AM)βY , 1

)
.

The coefficients (βX1 , βX2 , βY ) are drawn from a Unif
(
− 1, 1

)
, while the coefficient βA is

drawn from a Unif
(
−0.5, 0.5

)
distribution. In order to test how the DML and RWR methods

perform when the relevant models are misspecified, I also construct transformations of the

observed covariates (X∗
i , Z

∗
i ) as follows, employing a similar setup to Kang and Schafer

(2007):

X∗
1 = (exp(X1/2)− 1)2

X∗
1 = X2/(1 + exp(X2)) + 10

Z∗|A = 1 = (X1 · Z/25 + 0.6)3

For each simulated dataset, I construct two estimates of the path-specific effect θ1 (A→

4



M → Y ) by estimating the parameter set (τ0, ∆0,∆1, π1) via the RWR and DML procedures

described in Section 3. Standard errors for the coverage rates are computed via the estimated

variance of the estimated EIFs for the DML approach, and via the nonparametric bootstrap

with 1000 replications for the RWR procedure. For the DML estimator, for each component

involved in the decomposition, I construct a Neyman-orthogonal “signal” using its EIF. The

recentered EIFs for each component are shown below:

M∗(1) = γ1(X) +
I(A = 1)

π0(X, 1)
(M − γ1(X)),

Y ∗(a) = µ0(X, a) +
I(A = a)

π0(X, a)
(Y − µ0(X, a)), for a ∈ {0, 1}

Y ∗(1,m1) = ν1(X,m) +
I(A = 1)I(M = m)

π0(X, 1)π1(X,m1)
(Y − µ1(X,Z,m))

+
I(A = 1)

π0(X, 1)
(µ1(X,Z,m)− ν1(X,m)), for m ∈ {0, 1}

where

π0(X, a) ≜ Pr[A = a | X]

π1(X,m1) ≜ Pr[M = m | X,A = 1]

γ1(X) ≜ E[M | X,A = 1]

µ0(X, a) ≜ E[Y |X,A = a]

µ1(X,Z,m) ≜ E[Y |X,A = 1, Z,M = m]

ν1(X,m) ≜ E[µ1(X,Z,m)|X,A = 1].

I run 1000 replications of this DGP and compute the average bias, the root mean square

error (RMSE), and the coverage of nominal 95% confidence intervals for sample sizes of

250, 500, and 1000 and using either the ”correctly specified” covariates (X1, X2, Z) and the

”incorrectly specified”, transformed versions (X∗
1 , X

∗
2 , Z

∗). I calculated the true value of

θ1 by recovering the true values of the parameter set (τ0, ∆0,∆1, π1) in each Monte Carlo

5



simulation.

Figure 1 presents the results of this simulation experiment. Under correctly specified

models, the DML and RWR estimators perform similarly, with each displaying low bias,

low RMSE and close to nominal coverage at all sample sizes. Under incorrectly specified

models, however, the DML and RWR approaches diverge in performance. Whereas the

DML estimator under an incorrect feature space performs similarly to when it is used on

the correct feature space, the RWR estimator performs much more poorly, displaying a

large amount of bias that in fact grows with the sample size, a large RMSE, and coverage

rates that are not close to nominal. In short, when the models are correctly specified, both

the parametric and semiparametric approaches perform well; the strong performance of a

semiparametric approach compared with a parametric estimation strategy becomes clear

under model misspecification.
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Figure 1: Bias, RMSE, and coverage of DML and RWR estimators for n = 250, 500, 1000.
The left panel shows the performance of the DML and RWR estimators when the correct
feature matrix is supplied to the estimators; the right panel shows the performance of the
two estimators when an incorrect feature matrix is supplied to the estimators, as described
in the main text.
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C Sensitivity analysis

How do my estimates tally with previous findings on the labor market returns to education?

While previous work does not estimate quantities analogous to the direct and indirect effects

of interest (i.e., the θk terms), some prior educational returns estimates are closely related to

the net effect (τk) terms that inform the total, direct and indirect components of the decom-

position. My estimate of the net effect of 4-year college enrollment (τ1) is large, at 54%, but

not implausibly so. While Zimmerman (2014) and Smith et al. (2020) recover college earn-

ings returns at around 20by age 30 (exploiting admissions discontinuities in the Florida and

Georgia state university systems), both of these studies estimate the earnings premium from

attending a less selective 4-year college rather than a community college, for the marginally

qualified university attendee. By contrast, τ1 captures the effect of 4-year college enroll-

ment compared with community college and no college enrollment, pooling across the less

selective colleges examined in Zimmerman (2014) and Smith et al. (2020) as well as more

selective colleges which could have greater earnings effects. Moreover, since τ1 represents

an effect averaged over all individuals, it reflects college return among a broader population

than the marginal college-goers in previous studies, for whom economic theories of “positive

selection” suggest the effect of college attendance is lowest (Willis and Rosen, 1979; Carneiro

et al., 2011).6 One additional point of comparison are instrumental variable (IV) estimates

of returns to years of schooling, which are typically estimated in the range of 6 to 12 (Angrist

6My estimate of ∆1 (the direct effect of 4-year college attendance on earnings) further
tallies with a similar quantity estimated by Scott-Clayton and Wen (2019). On the intensive
margin of employment (i.e. dropping respondents with zero observed earnings), the authors
estimate a return to college attendance without degree completion of 0.21. While, theo-
retically, one might expect my estimate - which corresponds to the extensive employment
margin (including respondents with zero observed earnings - to be larger, the fact that it is
slightly smaller could reflect several factors, including the richer array of pre-college controls
I use in my models, model mis-specification resulting from linearities imposed in prior work
and, perhaps most importantly, collider-stratification biases induced by conditioning on BA
completion in Scott-Clayton and Wen (2019)’s models (biases that are likely reduced by the
inclusion of time-varying controls).
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and Krueger, 1991, 1992; Kane and Rouse, 1993; Card, 1994; Ashenfelter and Zimmerman,

1997; Angrist and Chen, 2011) - although one estimate puts the return for women at 18.5%

(Butcher and Case, 1994). While my estimate of the overall return to high school gradua-

tion (τ0) could appear large in this light, several factors could explain this discrepancy. In

particular, IV estimates of schooling returns capture direct effects of schooling, whereas τ0

captures both the direct effect of schooling as well as its continuation value via subsequent

education. Moreover, the ATE τ0 captures the effect of multiple years of schooling: the high

school graduates and high school non-completers that form the comparison groups differ by

multiple years of schooling: in the NLSY97, high school non-completers attained on average

3.7 fewer years of schooling than high school completers.

Of course, an alternative explanation is that my estimates are upwardly biased by a large

degree of unobserved confounding. While the sequential ignorability assumption facilitates

identification of educational effect pathways under a weaker set of conditions than might be

typically invoked in mediation settings, it is still strong and fundamentally unverifiable. To

assess potential bias of the estimated MPSEs due to unobserved confounders not picked up

in my covariate set (X,ZK), I propose a sensitivity analysis for each of the MPSEs.

Assume first that we have a binary unobserved confounder, U , for the treatment-outcome

relationship. Assuming that α0 = E[Y |x, a, U = 1]− E[Y |x, a, U = 0] does not depend on x

or a, and further that β0 = Pr[U = 1|x,A = 1]− Pr[U = 1|x,A = 0] does depend on x, for

τ0 = E[Y (1)− Y (0)] ≜ ATE, then bias(τ0) = αβ (VanderWeele and Arah, 2011),

Next, consider an unobserved binary confounder, Uk that affects both Mk and Y for any

k ∈ {1, . . . , K}. Then, under a weaker instantiation of Assumption 3 (Sequential Ignorabil-

ity), i.e.,

Y (1k,mk) ⊥⊥ (A,Mk)|X,A,Uk, Zk,Mk−1∀k ∈ [K], (13)

which states that potential outcomes under an arbitrary transition sequence are indepen-

dent of observed treatment and mediator values conditional on observed confounders (X,Zk)

9



and unobserved confounders Uk. Under the following set of assumptions: (Assumption Ak)

αk = E[Y |x, zk, 1k,mk, Uk = 1]−E[Y |x, zk, 1k,mk, Uk = 0] does not depend on (x, zk, 1k,mk),

and (Assumption Bk), βk = Pr[Uk = 1|x, zk, 1k,mk]− Pr[Uk = 1|x, zk, 1k]
)
does not depend

on (x, zk), I can show that, for any k ∈ {1, . . . K},

bias(τk) = αkβk,

and, further, that

bias(∆k−1) = −αkβkπk,

where πk =
∫
x

∫
zk
Pr[Mk = 1|x, zk, 1k]

∏k
j=1 dP (zj|x, zj−1, 1j−1)

]
dP (x), and is estimable

from observed using the estimation strategies described previously. A contour plot showing

bias-adjusted estimates of ∆k∗ and τk then enables assessment of how strong the unobserved

confounder would need to be to reduce estimates of the direct and gross effects to zero. I

illustrate these techniques in my empirical illustration below.

In order to assess the robustness of my empirical findings to potential violations of As-

sumption 3 (Sequential Ignorability), I implement my sensitivity analysis as discussed in

Section C.

Figure 2 below displays a set of contour plots, which capture the bias-corrected estimates

of the (∆k, τk) terms under varying degrees of confounding (that is, under different values of

αk and βk). For example, the level set marked “0” corresponds to values of (αk, βk) required

in order for the unobserved confounder to fully “explain away” estimates (∆k, τk) (i.e., to

reduce their true values to zero). Importantly, each row corresponds to a different set of

(αk, βk) terms for a given U , such that the top row corresponds to (α0, β0), while the second

row corresponds to (α1, β1), and so on.

For simplicity, I consider U to be an unmeasured binary confounder that is (marginally)

positively associated with each transition A,M1, . . .M3 as well as with adult earnings Y .

10



To benchmark the hypothetical behavior of U , for each plot, I also display the values of

(αk, βk) that would correspond to a U that behaved similarly to a given confounder that I

do observe in the data: an indicator for whether an individual’s test score on the ASVAB

is above the median. In each plot, I mark this point and label it “Ability”. For each plot,

I also mark the point on the zero contour that corresponds to αk = βk (i.e, the point at

which the unobserved confounder’s associations with the treatment and with the outcome

are equal, and reduce the true value of the parameter to zero).

I focus on estimates of τ0 and ∆0 to assess how robust my primary conclusion - that

the ATE of high school completion is overwhelmingly mediated by high school’s direct effect

on earnings - is to unobserved confounding. Bias-adjusted estimates of the ATE τ0 are

presented in the top row of Figure 2. Since U is assumed to be positively associated with

both A and Y , τ0 is overestimated and suffers from a bias of α0β0. My estimate of τ0 at 0.67

is nevertheless quite robust: if U had similar effects to ability, the effect would be reduced

by 0.06 log points, to 0.61, still implying a high earnings premium to high school completion

overall in excess of 84%.

How do my estimates of the direct effect of high school completion ∆0 (and, in particular,

about the proportion of the total effect that is direct) fare under unobserved confounding?

The second row of Figure 2 considers bias-adjusted estimates of ∆0 = θ0 under different

values of (α1, β1), which correspond to the effects of an unobserved confounder U (marginally)

positively associated with both M1 and with Y . As described above, in this scenario, ∆0 is

affected by a bias of−α1β1π1. Importantly, even if the unobserved confounder U ismarginally

positively associated with high school graduation (A), the conditional association between

U and A may be zero or even negative sinceM1 is a collider of A and U . In the case that the

conditional association between U and A is negative, −α1β1π1 would be positive, implying

an overestimation of the direct effect θ0. On the plot, I show estimates of U if it behaved

similarly to the ability variable. Indeed, despite the fact that ability is marginally positively

associated with high school completion (top row of Figure 2), its conditional association -

11



conditional on college attendance - is depressed to zero. Thus, it would take an extreme

form of confounding for θ0 to be largely different from its estimated value of .46. In this way,

my primary finding that the ATE of high school graduation is overwhelmingly mediated via

its direct effect remains highly robust to patterns of unobserved confounding, under my set

of simplifying assumptions.
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Figure 2: Sensitivity Analysis for the “gross effect” (τk) and “direct effect” (∆k) terms
in decomposition. Each row corresponds to a different set of (αk, βk) terms, where αk =
E[Y |x, zk, 1k,mk, Uk = 1] − E[Y |x, zk, 1k,mk, Uk = 0] parameterizes the effect of Uk on Y,
and βk = Pr[Uk = 1|x, zk, 1k,mk] − Pr[Uk = 1|x, zk, 1k]

)
parameterizes the effect of Mk on

Uk. Each row corresponds to a different set of (αk, βk) terms. For example, the top row
corresponds to (α0, β0), while the second row corresponds to (α1, β1), and so on.
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D Further details on variable construction and educa-

tion groups

Variable construction

In an effort to satisfy the sequential ignorability assumption (Assumption 3), I include a

large array of covariates in my models for the effects of completing educational transitions

on labor market outcomes. Figure 3 summarizes my assumed data-generating process for the

empirical example. In addition to including information on respondent demographics (gen-

der, race, ethnicity, age at 1997), and observed pre-college performance such as overall high

school GPA and test score on the Armed Services Vocational Aptitude Battery (ASVAB),

I include detailed information on socioeconomic background (parental education, parental

income, parental asset, co-residence with both biological parents, presence of a paternal fig-

ure, rural residence, southern residence), an index of substance use, an index of delinquency,

whether the respondent had any children by age 18), and peer and school-level characteristics

(measures of peers’ college expectations and behaviors). Both parental income and parental

asset variables are transformed to 2023 dollars.

Since my proposed decomposition also facilitates the inclusion of a distinct set of ob-

served intermediate confounders for each transition to adjust for selection processes that

may confound the causal effects of each transition on earnings (i.e., the A− Y and Mk − Y

relationships, for k ∈ {1, . . . K}, I include two postsecondary characteristics (Z) to adjust

for confounders of the effect of BA completion and graduate school attendance on earnings,

namely, field of study, and college GPA. Specifically, I use college self-reported major field

of study, drawing on the NLSY survey instrument asking respondents about their choice

of major in each month in which they were enrolled in college, and using a dummy vari-

able to denote whether whether a respondent majored in a STEM or non-STEM field by

age 29. Finally, college GPA is measured using the respondent’s cumulative GPA from the

14



Post-Secondary Transcript Study. I treat two of the Zk sets as empty (namely, Z1 and Z3),

assuming that the effects of the first mediator (college attendance, M1) on subsequent tran-

sitions and adult earnings are unconfounded given background characteristics (X), and that

the effects of the third mediator (graduate school attendance, M3) are unconfounded given

background characteristics (X) and postsecondary characteristics (Z). 7

How convincingly do I satisfy the sequential ignorability assumption? Despite the in-

clusion of a comprehensive set of background covariates in my models, it is possible that

observed variables do not perfectly proxy for all important confounders jointly affecting ed-

ucation and earnings. In particular, researchers often argue that important variables, such

as students’ innate ability, ambition, and detailed forms of socioeconomic advantage, con-

found observational estimates of educational returns (e.g. Carneiro et al., 2011). While some

research suggests that observational estimates of earnings returns may well capture actual

returns to education and that the degree of observational bias may be rather small (Card,

1999), it is of course impossible to quantify the true extent of the bias in the estimates I

produce. The sensitivity analysis described above provides a step towards this goal.

I note that my assumption of ignorability of M3 without conditioning on intermediate

variables Z3 is perhaps the strongest assumption I make. For example, many individuals take

time off to work before enrolling in graduate school, and labor market experience and earnings

gained in the interim period between college completion and graduate school enrollment may

confound the latter variable’s effects on earnings. Nevertheless, including a measure of labor

market characteristics for this period is difficult because some respondents enroll directly in

graduate school after BA completion, such that pre-graduate school earnings variables would

be undefined for these individuals.

7To be clear, assuming that Z1 and Z3 are empty is not to say thatM1 and M3 are
marginally unconfounded; rather, it means that the set of covariates that confound the
effects of M1 is assumed to be the same as those that confound the effects of A, and that the
set of covariates that confound the effects of M3 are assumed to be the same as those that
confound the effects of M2. This assumption is in part data-driven, given the few variables
observed chronologically post high school graduation and pre college attendance.
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Table 1 shows conditional means of respondent attributes X and Z for the full (imputed)

and restricted (non-imputed) samples, showing first the mean among the full population of

high school goers, and progressively restricting the sample from (i) high school (HS) non-

completers, to (ii) HS graduates, to (iii) college attendees and, finally, to (iv) BA completers.

Imputed and non-imputed means - shown without and with brackets, respectively - are

highly similar across variables. As I progressively restrict the sample to those who attained

higher educational levels, variables capturing components of socioeconomic advantage (such

as parental income, parental education and household net worth) increase monotonically in

value. Background covariates measuring aspects of the school environment (such as peers’

college expectations - which is an indicator for whether over 90 of a respondent’s peers

expected to go to college) behave similarly. I also see that students who progress to higher

educational levels have higher levels of pre-college ability: HS non-completers have on average

an ASVAB Percentile score of 22.3, compared with only in excess of 70 among BA completers.

Similarly, college-goers average high school GPA is approximately .5 higher than high school

graduates overall (regardless of whether or not they proceed to college). Nevertheless, the

association between high school GPA and attainment declines at higher educational levels:

BA completers have only on average a .11 higher a high school GPA than the pooled group

of college goers, irrespective of their BA completion status. At this stage, college GPA

appears to matter more: college goers overall have on average a college GPA of 2.77, while

BA completers’ average college GPA is 3.07.

Educational groups: raw mean earnings

Table 2 (column 2) presents the proportion of individuals who have attained each level

of education constructed above. By age 22, a small, but not insignificant, proportion of

individuals who enroll in high school do not complete their studies (13), and by this same

age, just over 40% of individuals have attended a 4-year college. By age 29, 29 of individuals

have attained a Bachelor’s degree or higher. These estimates of high school completion and

16



BA completion align closely both with those reported in previous studies that employ the

NLSY97 (e.g. Scott-Clayton and Wen (2019), as well as with those reported in the Current

Population Survey (CPS). Table 2 (columns 3-4) also shows mean log earnings by educational

group (column 3), alongside the estimated gap between these means and mean log earnings

among high school non-completers (column 4). High school dropouts earn an average of 9.07

log earnings, while groups with higher levels of attainment earn successively more than high

school dropouts, though at a decreasing rate. High school graduates earn on average 1.11

log earnings more than high school non-completers, implying an earnings premium in excess

of 200% (exp(1.11)− 1), while college goers earn on average 1.5 log earnings more than high

school non-completers (or 0.6 log earnings more than high school graduates). At the highest

end, graduate school goers earn on average 10.88 log earnings. These educational premia are

extremely high, since they reflect both the causal effect of a given educational level as well

as the effects of individual, geographic and family factors correlated both with attainment

and with adult earnings. To net out these patterns of selection, we need to turn to estimates

of the MPSE decomposition, as well as its constituent components.
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Figure 3: DAG showing the hypothesized causal relationships between high school comple-
tion A and adult earnings Y via mediators M1, M2 and M3.
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Table 2: Means of observed log earnings by educational participation, and earnings gaps
(versus high school non-completers).

Group Population Proportion Log Earnings Gap (vs HS Non-Completers)

HS Non-Completers 0.13 9.07 (0.05)

HS Graduates 0.87 10.18 (0.02) 1.11 (0.05)

College Goers 0.41 10.57 (0.03) 1.5 (0.05)

BA Completers 0.29 10.73 (0.03) 1.66 (0.06)

Grad. School Goers 0.09 10.88 (0.05) 1.81 (0.07)

Note: The category "High School Non-Completers" captures all individuals who attended
high school but did not obtain a high school diploma; "High School Graduates" refers to
those individuals who graduated high school, regardless of their subsequent educational expe-
riences (i.e., whether or not they proceeded to college); "College Goers" refers to individuals
who attended a 4-year college, irrespective of whether they completed their degree; "BA
Completers" denotes individuals who completed a Bachelor’s degree, while "Grad. School
Goers" captures individuals who participated in a graduate-level degree program. A small
constant of $1, 000 is added to observed earnings before taking the log. All statistics are
computed with a monotonicity assumption imposed on the observed data (i.e. such that all
individuals who complete a given educational level are coded as having completed all prior
levels). All statistics are calculated using NLSY97 sampling weights, and standard errors
are in parentheses.
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E Results without imputation of missing covariates

In the main text, I report estimates of the MPSE decomposition for the ATE of high school

attendance on logged annual earnings for the full sample of NLSY97 respondents with non-

missing educational information and non-missing earnings (N = 7, 305). A very large number

(approximately 50%) of these respondents are missing information on one or more of the co-

variates (X,Z) used in the models in order to identify the decomposition components, due

especially to the large amount of missingness on variables such as parental assets (25% of

the sample), and the Armed Services Vocational Aptitude Battery (ASVAB) test (20% of

the sample). To assess the sensitivity of my primary conclusions to the use of multiple im-

putation as opposed to dropping observations with missing values, I replicate my DML and

RWR estimates on a non-imputed analytic sample (N = 3, 735). Figure 4 below shows the

results of this exercise. For both estimation procedures, results under multiple imputation

and non-imputation are highly similar. As is to be expected, imputation reduces standard

errors significantly, especially for the parametric RWR procedure. Further, the greatest vari-

ability between imputed and non-imputed results come from effects pertaining to high school

completion, perhaps because patterns of missingness are correlated with educational attain-

ment. Despite this, because the total effect τ0 and direct effect θ0 are similarly attenuated

in the imputed sample, the overall conclusion about the importance of the direct effect in

explaining the ATE remains unaffected.
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Figure 4: Decomposition of the Average Total Effect (ATE) of High School Graduation on
Logged Earnings Under Multiple Imputation (MI) and Under Dropping Observations with
Missing (X,Z) Values. Results with multiple imputation (purple lines) are reproduced from
the main text (N = 7, 305); results without multiple imputation (red lines) employ a sample
restricted to respondents with observed values for all covariates used (N = 3, 735).
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F Results under alternative definitions of earnings

In the main text, I report estimates of the MPSE decomposition components for the ATE

of high school attendance on logged annual earnings. Logged annual earnings in the main

text are defined as the log of observed annual earnings plus a small constant of $1, 000, in

order to accommodate respondents with zero observed annual earnings. In order to assess

the sensitivity of the reported results to the choice of this constant, I replicate the main

analyses under alternative definitions of earnings. Figure 5 reports estimates of the direct

and indirect effects under a series of different constants c added to pre-logged annual earnings,

for c ∈ {10, 100, 1000}, while Figure 6 shows estimates of these direct and indirect effects for

observed annual earnings in dollar values. Beginning with Figure 5, I see that, while for the

indirect effects θ1, θ2, and θ3, both DML and RWR estimates are quite consistent under these

different constants, estimates of the total effect τ0 as well as the direct effect ∆0 are quite

sensitive to the choice of constant. Specifically, lower constant values correspond with large

increases in the DML estimate of τ0 from 0.67 (c = 1000) to 1.20 (c = 10), and of ∆0 from 0.47

(c = 1000) to 0.89 (c = 10). This is because individuals with less than a high school degree

are more likely than their higher-educated counterparts to have zero or low earnings, making

their logged earnings rather sensitive to the choice of constant. Nevertheless, because the

total effect τ0 and direct effect θ0 are similarly affected by the change in constant value, the

importance of the direct effect in explaining the ATE of high school completion is reinforced.

In particular, the proportion of the total effect that is direct is estimated to be 70%, 74% and

72% under each of c = 10, 100, 1000. Turning next to Figure 5, under DML, estimates of high

school completion increases earnings in expectation by roughly $16, 500, corresponding to

an earnings return of approximately 53 relative to a baseline of $31, 300 without high school

graduation (E[Y (0)]) . Almost half ( 7824
16454.

· 100 = 47.5%) of the total effect is estimated to

operate directly, with 29% and 22% mediated via college attendance and college completion,

respectively.
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Figure 5: Decomposition of the Average Total Effect (ATE) of High School Graduation on
Logged Earnings Under Alternative Definitions of Earnings. The figure shows estimates of
the total effect (τ0) as well as the indirect effects ∆0,∆1, . . . . . . ,∆K when constants of 10,
100 and 1000, respectively, are added to raw annual earnings (in dollar amounts) before
taking the log.
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Figure 6: Decomposition of the Average Total Effect (ATE) of High School Graduation on
Logged Earnings with Different Definitions of Earnings. The figure shows estimates of the
total effect (τ0) as well as the indirect effects ∆0,∆1, . . . . . . ,∆K when constants of 10, 100
and 1000 are added to raw annual earnings (in dollar amounts) before taking the log.

25



G Extension to multivalued, discrete mediators

The main text considers a decomposition of the ATE in the case of binary monotonic me-

diators (i.e., educational transitions), but the framework can straightforwardly be extended

to accommodate categorical transitions. Such a decomposition is especially appealing when

we consider the variegated and complex trajectories that individuals take through the US

postsecondary system, that dichotomizing transitions invariably misses. In particular, in the

early 2010s, under 40% of high school graduates immediately enrolled in a four-year college,

with around 30% immediately attending a two-year college. Approximately one third of im-

mediate two-year college attendees will then progress to a four-year college; indeed, nearly

50% of BA recipients previously attended a public two-year college in their educational ca-

reers. To illustrate the MPSE decomposition for multivalued, discrete mediators in the case

of a single mediator, consider high school graduation A, and immediate college enrollment

M ∈ {none, 2yr, 4yr} denotes whether an individual did not pursue postsecondary education,

or instead attended a 2-year or 4-year college. Assumption 1 is similarly assumed to hold

in this context, such that M(0) = 0 (high school non-completers cannot pursue any form

of postsecondary education). Under this assumption, I obtain the following multivariate

decomposition:

ATEE[Y (1)− Y (0)]

= E[Y (1, 0)− Y (0)]

+ P[M(1) = 2yr]E[Y (1, 2yr)− Y (1, 0)] + cov
[
I[M1(1) = 2yr], Y (1, 2yr)− Y (1, 0)

]
(14)

+ P[M(1) = 4yr]E[Y (1, 4yr)− Y (1, 0)] + cov
[
I[M1(1) = 4yr], Y (1, 4yr)− Y (1, 0)

]
.

(15)
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Each of these quantities can be identified under Assumptions 2-4 above. Further, Equa-

tions 14 and 15 can be further decomposed into the direct and gross effects of each of these

transitions in a way analogous to Equation 4 (for example, the gross effect of 2-year atten-

dance can be decomposed into its direct effects, net of subsequent transfer to a 4-year college,

and its indirect effect via 4-year transfer, which itself can be further decomposed into direct

and gross effects).
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H Description of EIFs used in empirical illustration

For each component involved in the MPSE, I construct a Neyman-orthogonal “signal” using

its EIF, whose exact form depends on whether each set of intermediate confounders is empty

or not. Figure 3 in the main text shows a potential data-generating process for the direct

and indirect (continuation) effects of high school graduation on adult earnings, via three

transitions: college attendance (M1), BA completion (M2), and graduate school attendance

(M3). I assume that a set of pre-college characteristics serve as confounders for the A −

(M1,M2,M3, Y ) relationships, and that a set of post-secondary confounders Z confound the

M2 − (M3, Y ) relationships.

Under these assumptions for the various sets of confounders, my MPSE decomposition

implies that, in the case of the four transitions (one treatment and three mediators), it suffices

to estimate the following three sets of parameters: (i) four direct effects ∆k, k ∈ [0 . . . , 3],

where ∆3 = τ3, (ii) four gross effects τk, k ∈ [0 . . . , 3], where τ0 = ATE, (iii) three mediator

terms, πk, k ∈ [1 . . . , 3]. All components in the three-mediator decomposition can then be

estimated as functions of these parameters. For each of these target parameters, I construct

a Neyman-orthogonal signal using its efficient influence function. Because of my assumed

data-generating process, which maintains that there is only a single set of intermediate

confounders (as opposed to a separate set of confounders for each mediator), the EIF for

each estimand involved in the decomposition simplifies somewhat. Specifically, the recentered

EIFs for each component in the decomposition are shown below:

M∗
1 (1) = γ1(X) +

I(A = 1)

π0(X, 1)
(M1 − γ1(X)),

M∗
2 (1, 1) = γ2(X) +

I(A = 1)I(M1 = 1)

π0(X, 1)π1(X, 1)
(M2 − γ2(X)),

M∗
3 (1, 1, 1) = E[γ3(X,Z)|X,A = 1,M1 = 1]
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+
I(A = 1)I(M1 = 1)

π0(X, 1)π1(X, 1)
(γ3(X,Z)− E[γ3(X,Z)|X,A = 1,M1 = 1])

+
I(A = 1)I(M1 = 1)I(M2 = 1)

π0(X, 1)π1(X, 1)π2(X,Z, 1)
(M3 − γ3(X,Z)),

Y ∗(a) = µ0(X, a) +
I(A = a)

π0(X, a)
(Y − µ0(X, a)), for a ∈ {0, 1}

Y ∗(1,m1) = µ1(X,m1) +
I(A = 1)I(M1 = m1)

π0(X, 1)π1(X,m1)
(Y − µ1(X,m1)), for m1 ∈ {0, 1}

Y ∗(1, 1,m2) = E[µ2(X,Z,m2)|X,A = 1,M1 = 1]

+
I(A = 1)I(M1 = 1)

π0(X, 1)π1(X, 1)
(µ2(X,Z,m2)− E[µ2(X,Z,m2)|X,A = 1,M1 = 1])

+
I(A = 1)I(M1 = 1)I(M2 = m2)

π0(X, 1)π1(X, 1)π2(X,Z,m2)
(Y − µ2(X,Z,m2)), for m2 ∈ {0, 1}

Y ∗(1, 1, 1,m3) =E[µ3(X,Z,m3)|X,A = 1,M1 = 1]

+
I(A = 1)I(M1 = 1)

π0(X, 1)π1(X, 1)
(µ3(X,Z,m3)− E[µ3(X,Z,m3)|X,A = 1,M1 = 1])

+
I(A = 1)I(M1 = 1)I(M2 = 1)I(M3 = m3)

π0(X, 1)π1(X, 1)π2(X,Z, 1)π3(X,Z,m3)
(Y − µ3(X,Z,m3)) for m3 ∈ {0, 1},

where
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π0(X, a) ≜ Pr[A = a | X]

π1(X,m1) ≜ Pr[M1 = m1 | X,A = 1]

π2(X,Z,m2) ≜ Pr[M2 = m2 | X,A = 1,M1 = 1, Z]

π3(X,Z,m3) ≜ Pr[M3 = m3 | X,A = 1,M1 = 1, Z,M2 = 1]

γ1(X) ≜ E[M1 | X,A = 1]

γ2(X) ≜ E[M2 | X,A = 1,M1 = 1]

γ3(X,Z) ≜ E[M3 | X,A = 1,M1 = 1, Z,M2 = 1]

µ0(X, a) ≜ E[Y |X,A = a]

µ1(X,m1) ≜ E[Y |X,A = 1,M1 = m1]

µ2(X,Z,m2) ≜ E[Y |X,A = 1,M1 = 1, Z,M2 = m2]

µ3(X,Z,m3) ≜ E[Y |X,A = 1,M1 = 1, Z,M2 = 1,M3 = m3].
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I Proofs and technical details

I.1 EIFs for ηk and θk terms (Proposition 1)

Under Assumptions 2-4, the covariance component ηk is identified as ηk = τk−1−∆k−1−πkτk.

Following (Kennedy, 2022, , p. 15), I let IF : Ψ → L2(P) denote the operator mapping the

functionals {∆k, πk, ηk} : P → R, ∀ ∈ [K] to their respective influence functions under the

nonparametric model P . First, by linearity of the EIF, IF(ηk) is given by

IF(ηk) = IF(τk−1)− IF(∆k−1)− IF(πkτk).

Since IF(πkτk) can be written as follows IF(πkτk) = τkIF(πk) + πkIF(τk), IF(ηk) can be

written as

IF(ηk) = IF(τk−1)− IF(∆k−1)−
(
τkIF(πk) + πkIF(τk)

)
= IF(τk−1)− IF(∆k−1)− τkIF(πk)− πkIF(τk).

Noticing that I can rewrite this expression as

IF(ηk) = RIF(τk−1)− τk−1 − RIF(∆k−1) + ∆k−1 − τkRIF(πk) + τkπk − πkRIF(τk) + πkτk

= RIF(τk−1)− RIF(∆k−1)− τkRIF(πk)− πkRIF(τk) + πkτk − ηk,

where RIF(ϕ) = IF(ϕ) + ϕ, I can obtain the corresponding EIF-based estimator for ηk

can obtained by solving the empirical moment condition obtained by setting the average of

the above equation equal to 0, and plugging in the set of estimated nuisance functions.
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η̂eifk = ˆRIF(τk−1)− ˆRIF(∆k−1)− τk ˆRIF(πk)− πk ˆRIF(τk) + πkτk,

where ˆRIF(ϕ) = ÎF(ϕ) + ϕ, and ÎF(ϕ) denotes the influence function of a parameter

evaluated at estimates of its component nuisance functions.

Turning next to the influence functions for the continuation effects θk, k ∈ {1, . . . K},

following the same logic as the above, I can write the EIF of θk, IF(θk), as

IF(θk) = IF(∆k)
k∏

j=1

πj +∆k

k∑
j=1

IF(πj)
k∏

l:l ̸=j

πl + IF(ηk)
k−1∏
j=1

πj + ηk

k−1∑
j=1

IF(πj)
k−1∏
l:l ̸=j

πl.

Rewriting this expression as

IF(θk) = RIF(∆k)
k∏

j=1

πj +∆k

k∑
j=1

RIF(πj)
k∏

l:l ̸=j

πl + RIF(ηk)
k−1∏
j=1

πj + ηk

k−1∑
j=1

RIF(πj)
k−1∏
l:l ̸=j

πl

− k∆k

k∏
j=1

πj − (k − 1)ηk

k−1∏
j=1

πj − θk,

I obtain the corresponding EIF-based estimator for θk can obtained by solving the em-

pirical moment condition obtained by setting the average of the above equation equal to 0,

and plugging in the set of estimated nuisance functions, as:

θ̂eifk = R̂IF(∆k)
k∏

j=1

π̂j + ∆̂k

k∑
j=1

ˆRIF(πj)
k∏

l:l ̸=j

π̂l + R̂IF(ηk)
k−1∏
j=1

π̂j + η̂kR̂IF(πj)
k−1∏
l:l ̸=j

π̂l

− k∆̂k

k∏
j=1

π̂j − (k − 1)η̂k

k−1∏
j=1

π̂j.
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I.2 Semiparametric efficiency (Proposition 2)

In this section, I establish the conditions required for the semiparametric efficiency of all

terms featured in the decomposition. Before proceeding, I establish some notational prelim-

inaries. Let ||g|| = (
∫
g⊤gdP )1/2 denote the L2(P ) norm, and let Rn

(
·
)
denote a mapping

from a nuisance function to its L2(P ) convergence rate. Let φ̂EIF
kmk

= Pn[m(O; η̂)], where

m(O; η̂) is the quantity inside Pn[·] in equation 9, and η̂ = (π̂0, . . . , π̂K , µ̂0, . . . , µ̂K). I have

that

φ̂EIF
kmk

− φkmk
= Pn[m(O; η̂)]− P [m(O; η)]

= Pn[m(O; η)] + P [m(O; η̂)−m(O; η)]︸ ︷︷ ︸
≜R2(η̂)

+(Pn − P ) [m(O; η̂)−m(O; η)], (16)

where Pg =
∫
gdP denotes the expectation of function g at the truth. The first term in

equation 16 is a sample average, and can be analyzed with the central limit theorem. It has

an asymptotic variance of E
[
(φkmk

(O; η))2
]
. The last term is an empirical process term that

will be op(n
−1/2) if either the nuisance functions fall in a Donsker class or if cross-fitting is

used to induce independence between η̂ and O. Thus,θ̂EIF will be asymptotically normal and

semiparametric efficient if R2(η̂) is o(n
−1/2). To analyze this term, I first note that
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P [m(O; η)] = P

[
A

π01
(
X
) ( I(Mk = mk)

πkmk

(
X,Zk

) k−1∏
j=1

Mj

πj1
(
X,Zj

)) (Y − µk
kmk

(
X, Z̄k

))
+

k∑
j=1

A

π01
(
X
) (j−1∏

l=1

Ml

πl1
(
X,Z l

)) (µk
jmk

(
X,Zk

)
− µk

j−1mk

(
X, Z̄j−1

))
+ µ0(X)

]

= P

[
A

π01
(
X
) ( I(Mk = mk)

πkmk

(
X,Zk

) k−1∏
j=1

Mj

πj1
(
X,Zj

)) ·E[Y − µk
kmk

(
X, Z̄k

)
|X, Z̄k, 1k,mk]︸ ︷︷ ︸

=0


+

k∑
j=1

A

π01
(
X
) (j−1∏

l=1

Ml

πl1
(
X,Z l

)) ·E[µk
jmk

(
X,Zj

)
− µ(j−1)mj

(
X, Z̄j−1

)
|X, Z̄j−1, 1j]︸ ︷︷ ︸

=0

+ µ0(X)

]

= P

[
µ0(X)

]
.

Plugging this result into R2(η̂), I have that

R2(η̂) = P [m(O; η̂)−m(O; η)]

= P

[ k−1∑
j=0

A

π̂01(X)

(
j−1∏
l=1

Mj

π̂l1(X, Z̄l)

)
·

(
π̂j1
(
X,Zj

)
− πj1

(
X,Zj

))(
µ̂k
jmk

(
X, Z̄j

)
− µk

jmk

(
X, Z̄j

))
+

A

π̂01(X)

(
k−1∏
l=1

Mj

π̂l1(X, Z̄l)

)
·

(
π̂kmk

(
X,Zj

)
− πkmk

(
X,Zj

))(
µ̂k
kmk

(
X, Z̄k

)
− µk

kmk

(
X, Z̄k

))]
=

k∑
j=0

Op

(
||π̂j1

(
X,Zj

)
− πj1

(
X,Zj

)
|| · ||µ̂k

jmk

(
X, Z̄k

)
− µk

jmk

(
X, Z̄k

)
||
)
,

where the last equality results from the positivity assumption that π̂k1(X, Z̄k) is bounded
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away from zero, for all k ∈ [K], and from the Cauchy-Schwartz inequality. Then, assuming

that the empirical process term is of order op(n
−1/2), I can write φ̂EIF

kmk
− φkmk

as

ψ̂EIF
kmk

− ψkmk
= Pn[m(O; η)− ψkmk

]

+
k∑

j=0

Op

(
||π̂j1

(
X,Zj

)
− πj1

(
X,Zj

)
||
)
·Op

(
||µ̂k

jmk

(
X, Z̄k

)
− µk

jmk

(
X, Z̄j

)
||
)

+ op(n
−1/2).

Thus, letting Rn(k,mk) ≜
∑k

j=0Rn

(
π̂j)Rn

(
µ̂k
kmk

), φ̂rEIF
kmk

is consistent if Rn(k,mk) = o(1)

and it is semiparametric efficient if Rn(k,mk) = o(n−1/2). Clearly, then, ∆̂rEIF
k is consistent if∑k+1

j=k Rn(j, 0) = o(1) and it is semiparametric efficient if
∑k+1

j=k Rn(j, 0) = o(n−1/2). Similarly,

τ̂ rEIFk is consistent if
∑1

j=0Rn(k, j) = o(1) and it is semiparametric efficient if
∑1

j=0Rn(k, j) =

o(n−1/2).

Turning next to to ϕk ≜ E[Mk+1(1k+1)], for all k ∈ [K − 1], I can similarly define

γk
(
X, Z̄k

)
iteratively as

γk
(
X, Z̄k

)
≜ E

[
Mk+1 | X, Z̄k, 1k+1

]
γj
(
X, Z̄j

)
≜ E

[
γj+1

(
X, Z̄j+1

)
| X, Z̄j, 1j+1

]
∀j ∈ [k − 1].

Similarly to the previous case, the EIF of ϕk is equal to

φk(O) =
A

π01
(
X
) ( k∏

l=1

Mj

πl1
(
X,Z l

)) (Y − γk
(
X, Z̄k

))
.

+
k∑

j=0

A

π01
(
X
) (j−1∏

l=1

Ml

πl1
(
X,Z l

)) (γj (X,Zj

)
− γj−1

(
X, Z̄j−1

))
+ γ0(X)− ϕk.
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Following similar arguments to the above, we have that

ϕ̂EIF
k − ϕk = Pn[m2(O; η)− ϕk]

+
k∑

j=0

Op

(
||π̂j1

(
X,Zj

)
− πj1

(
X,Zj

)
||
)
·Op

(
||γ̂j
(
X, Z̄j

)
− γj

(
X, Z̄j

)
||
)

+ op(n
−1/2),

where m2(O; η̂) = φk + ϕk. Thus, letting Rn(k, γ) ≜
∑k

j=0Rn

(
π̂j)Rn

(
γ̂j), ϕ̂

EIF
k is consis-

tent if Rn(k, γ) = o(1) and it is semiparametric efficient if Rn(k, γ) = o(n−1/2). This result

implies that if all nuisance functions are consistently estimated and converge at faster than

n1/4 rates, then ϕ̂EIF
k is semiparametric efficient. I first establish the following lemma:

Lemma 1. Let Xn and Yn denote two convergent sequences, where Xn = Op(n
−1/2) and

Yn = op(n
−1/2). Then, (a) XnYn = op(n

−1/2), and (b) XnXn = op(n
−1/2).

Proof. (a)Xn = Op(n
−1/2) = n−1/2Op(1) = op(1). Thus, XnYn = op(1)op(n

−1/2) = op(n
−1/2).

(b) XnXn = Op(n
−1/2)Op(n

−1/2) = Op(n
−1) = n−1/2Op(n

−1/2) = n−1/2op(1) (by (a)). Thus,

XnXn = op(n
−1/2).

Using this lemma, I establish rate conditions for the semiparametric efficiency of ηk =

τk−1 −∆k−1 − πkτk. I can analyze the asymptotic behavior of η̂k = τ̂k−1 − ∆̂k−1 − π̂kτ̂k via a

distributional expansion of each plug-in estimator:

η̂k = τ̂k−1 − ∆̂k−1 − π̂kτ̂k

= (τk−1 + Pn[τ
EIF
k−1] + τEPk−1 + τR2

k−1]− (∆k−1 + Pn[∆
EIF
k−1] + ∆EP

k−1 +∆R2
k−1]

− [πk + Pn[π
EIF
k ] + πEP

k + πR2
k ][τk + Pn[τ

EIF
k ] + τEPk + τR2

k ]

= (τk−1 + Pn[τ
EIF
k−1] + op(n

−1/2) + τR2
k−1]− (∆k−1 + Pn[∆

EIF
k−1] + op(n

−1/2) + ∆R2
k−1]
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− [πk + Pn[π
EIF
k ] + op(n

−1/2) + πR2
k ][τk + τEIFk + op(n

−1/2) + τR2
k ]

= [τk−1 −∆k−1 − πkτk] + Pn[(τk−1 −∆k−1 − πkτk)
EIF]

+ τR2
k−1 +∆R2

k−1 + πR2
k + τR2

k +Op(n
−1/2)Op(n

−1/2) +Op(n
−1/2)op(n

−1/2) + op(n
−1) + op(n

−1/2)

= [τk−1 −∆k−1 − πkτk] + Pn[(τk−1 −∆k−1 − πkτk)
EIF]

+ τR2
k−1 +∆R2

k−1 + πR2
k + τR2

k + op(n
−1/2),

where the penultimate equality follows from Proposition 1, and the final equality follows

from Lemma 1.

Thus, for any k ∈ {1, . . . , K}, η̂k = τ̂k−1 − ∆̂k−1 − π̂kτ̂k is semiparametric efficient if

τR2
k−1 +∆R2

k−1 + πR2
k + τR2

k = op(n
−1/2).

For the continuation terms (θk = (Πk
j=1πj)∆k +(Πk−1

j=1πj)ηk), I proceed by induction. Let

∆̂∗ = ∆∗ + Pn[∆
EIF
∗ ] + ∆EP

∗ + ∆R2
∗ and η̂∗ = η∗ + Pn[η

EIF
∗ ] + ηEP∗ + ηR2

∗ be asymptotically

linear, where ∗ ∈ {1, . . . K}. For k = 1, I can asymptotically expand π̂1∆̂∗ as

π̂1∆̂∗ = (π1 + Pn[π
EIF
1 ] + πEP

1 + πR2
1 )(∆∗ + Pn[∆

EIF
∗ ] + ∆EP

∗ +∆R2
∗ )

= (π1 + Pn[π
EIF
1 ] + op(n

−1/2) + πR2
1 )(∆∗ + Pn[∆

EIF
∗ ] + op(n

−1/2) + ∆R2
∗ )

= π1∆∗ + Pn[π
EIF
1 ∆∗ +∆EIF

∗ π1] + πR2
1 +∆R2

∗ + op(n
−1/2) (by Lemma S??)

=
k∑

j=1

πj∆∗ + Pn[(
k∑

j=1

πj∆∗)
EIF] + ∆R2

∗ +
k∑

j=1

πR2
j + op(n

−1/2) (by Proposition 1),

and expand (Πk−1
j=1πj)η∗, similarly, as

k−1∑
j=1

π̂j η̂∗ = η∗ + Pn[η∗
EIF] + τR2

∗−1 +∆R2
∗−1 + πR2

∗ + τR2
∗ + op(n

−1/2)

=
k−1∑
j=1

πjη∗ + Pn[(
k−1∑
j=1

πjη∗)
EIF]
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+ τR2
∗−1 +∆R2

∗−1 + πR2
∗ + τR2

∗ +
∑

j∈{1...,k∗−1}:j ̸=∗

πR2
j + op(n

−1/2),

following a similar logic to above. Now, assume that, for k∗ ∈ {1, . . . , K},

(Πk∗
j=1π̂j)∆̂∗ = ∆k

∏k∗

j=1 πj + Pn[(∆∗
∏k∗

j=1 πj)
EIF] + ∆R2

∗ +
∑k∗

j=1 π
R2
j + op(n

−1/2) and, fur-

ther, that (Πk∗−1
j=1 π̂j)η̂∗ = Πk∗−1

j=1 πjη∗ + Pn[(Π
k∗−1
j=1 πjη∗)

EIF] + τR2
∗−1 + ∆R2

∗−1 + πR2
∗ + τR2

∗ +∑
j∈{1...,k∗−1}:j ̸=∗ π

R2
j + op(n

−1/2). Then, by induction, I have that

(Πk∗+1
j=1 π̂)∆̂∗ =

[
(πk∗+1 + Pn[π

EIF
k∗+1] + op(n

−1/2) + πR2
k∗+1)

]
[
∆∗

k∗∏
j=1

πj + Pn[(∆∗

k∗∑
j=1

πj)
EIF] + ∆R2

∗ +
k∗∑
j=1

πR2
j + op(n

−1/2)

]

= ∆∗

k∗+1∏
j=1

πj + Pn[(∆∗

k∗+1∏
j=1

πj)
EIF] + ∆R2

∗

+
k∗+1∑
j=1

πR2
j +Op(n

−1/2)Op(n
−1/2)

+Op(n
−1/2)op(n

−1/2) + op(n
−1) + op(n

−1/2)

= ∆∗

k∗+1∑
j=1

πj + Pn[(∆∗

k∗+1∏
j=1

πj)
EIF] + ∆R2

∗ +
k∗+1∑
j=1

πR2
j + op(n

−1/2),

and that

(Πk∗

j=1π̂j)∆̂∗ =

[
(πk∗+1 + Pn[π

EIF
k∗+1] + op(n

−1/2) + πR2
k∗+1)

]
[
Πk∗−1

j=1 πjη∗ + Pn[(Π
k∗−1
j=1 πjη∗)

EIF] + τR2
∗−1 +∆R2

∗−1 + πR2
∗ + τR2

∗ +
∑

j∈{1...,k∗−1}:j ̸=∗

πj + op(n
−1/2)

]
= Πk∗

j=1πjη∗ + Pn[(Π
k∗

j=1πjη∗)
EIF] + τR2

∗−1 +∆R2
∗−1 + πR2

∗ + τR2
∗ +

∑
j∈{1...,k∗}:j ̸=∗

πR2
j + op(n

−1/2)

It follows that, for any k ∈ {1, . . . , K},
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(Πk
j=1π̂j)∆̂k = ∆k

k∑
j=1

πj+Πk−1
j=1πjηk+Pn[(∆k

k∑
j=1

πj+Πk−1
j=1πjηk)

EIF]+
k∑

j=k−1

∆R2
j +

k∑
j=k−1

τR2
j +

k∑
j=1

πR2
j .

Thus, θ̂k = (Πk
j=1π̂j)∆̂k + (Πk−1

j=1 π̂j)η̂k is semiparametric efficient if
∑k

j=k−1∆
R2
j +∑k

j=k−1 τ
R2
j +

∑k
j=1 π

R2
j = o(n−1/2). Proposition 2 then follows immediately by recogniz-

ing the rate conditions required for each of the constituent functionals of (πk,∆k, τk) to be

semiparametric efficient.
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J Derivation of RWR procedures

For simplicity, throughout the following I let Z0 = X and M0 = A. I assume the following

linear specification of the outcome model:

E[Y | Zk, A,Mk] = βk,0 + ck,0A+
k∑

j=1

βk,jMj + η⊤k,1X
⊥ + ck,1AX

⊥ +
k−1∑
j=1

ηTk,jMjX
⊥ +

k∑
j=1

γTk,jZ
⊥
j

+
k−1∑
j=1

Mj

j∑
l=1

ξ⊤k,k,lZ
⊥
l ,

(17)

where Z⊥
k = Zk−E[Zk|Zk−1,Mk−1 = 1k−1], ∀k ∈ [0, . . . , K]. In the following derivations,

I use the fact that, ∀k ∈ {1, . . . , K},

∫
z⊥k dP (zk|zk−1,mk−1 = 1)

= E[Zk − E[Zk|zk−1,mk−1 = 1]|zk−1,mk−1 = 1]

= 0.

Letting X = Z0, the above also implies that
∫
z⊥0 dP (z0) = E[Z0 − E[Z0]] = 0. Under

sequential ignorability and assuming linearity of the outcome with respect to all antecedent

variables, I have that

∆k−1 =

∫
E[Y |Mk−1 = 1k−1, zk,Mk = 0]

k∏
j=0

dP (zj|zj−1,mj−1 = 1)

−
∫

E[Y |Mk−2 = 1k−2, zk,Mk−1 = 0]
k∏

j=1

dP (zj|zj−1,mj−1 = 1)
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=

∫ [
βk,0 + ck,0 +

k−1∑
j=1

βk,j + η⊤k,1X
⊥ + ck,1X

⊥ +
k−2∑
j=1

ηTk,jX
⊥ +

k∑
j=1

γTk,jZ
⊥
j +

k−2∑
j=1

j∑
l=1

ξ⊤k,k,lZ
⊥
l )

− (βk,0 + ck,0 +
k−2∑
j=1

βk,jMj + η⊤k,1X
⊥ + ck,1AX

⊥ +
k−2∑
j=1

ηTk,jX
⊥ +

k∑
j=1

γTk,jZ
⊥
j +

k−3∑
j=1

j∑
l=1

ξ⊤k,k,lZ
⊥
l )

]
k∏

j=0

dP (zj|zj−1,mj−1 = 1)

= βk,k−1.

Further, for τk∀k ∈ {1, . . . , K} I have that

τk =

∫
E[Y |A = 1,Mk = 1k, zk]

k∏
j=0

dP (zj|zj−1,mj−1 = 1)

−
∫

E[Y |A = 1,Mk−1 = 1k−1, zk,Mk = 0]
k∏

j=0

dP (zj|zj−1,mj−1 = 1)

=

∫ [
(βk,0 + ck,0 +

k∑
j=1

βk,j + η⊤k,1X
⊥ + ck,1X

⊥ +
k−1∑
j=1

ηTk,jX
⊥ +

k∑
j=1

γTk,jZ
⊥
j +

k−1∑
j=1

j∑
l=1

ξ⊤k,j,lZ
⊥
l )

− (βk,0 + ck,0 +
k−1∑
j=1

βk,j + η⊤k,1X
⊥ + ck,1X

⊥ +
k−2∑
j=1

ηTk,jX
⊥ +

k∑
j=1

γTk,jZ
⊥
j +

k−2∑
j=1

j∑
l=1

ξ⊤k,j,lZ
⊥
l )

]
k∏

j=0

dP (zj|zj−1,mj−1 = 1)

= βk,k.

Finally, I assume that

E[Mk+1 | A = 1, Zk,Mk = 1k] = θ0 +
k∑

k=0

δTk+1Z
⊥
k .

Then:
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E[M(1k+1)] = θ0 +

∫ [ k∑
k=0

δTk+1Z
⊥
k

k∏
j=0

dP (zj|zj−1,mj−1 = 1)

]
= θ0.
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K Further details about simulation study

L Derivation of bias formulae for sensitivity analysis

In this section, I derive the bias formulae for the set (τk,∆k) for all k ∈ [K], where K denotes

the number of mediators considered in the decomposition, under a sequence of simplifying

assumptions. Assume first that I have a binary unobserved confounder, U , for the treatment-

outcome relationship. Assuming that α0 = E[Y |x, a, U = 1] − E[Y |x, a, U = 0] does not

depend on x or a, and further that β0 = Pr[U = 1|x,A = 1] − Pr[U = 1|x,A = 0] does

depend on x, for τ0 = E[Y (1)− Y (0)] ≜ ATE, I then have that bias(τ0) = αβ (VanderWeele

and Arah, 2011).

Next, consider an unobserved confounder, Uk that affects both Mk and Y for any k ∈

{1, . . . , K}. Then, under a weaker iteration of Assumption 3 (Sequential Ignorability), i.e.,

Y (1k,mk) ⊥⊥ (A,Mk)|X,A,Uk, Zk,Mk−1∀k ∈ [K],E[Y (1k,mk)] is identified as

E[Y (1k,mk)] =

∫
x

∫
zk

E[Y |x, zk, 1k,mk, uk]
[
dP (uk|x, zk, 1k−1)

k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x).

By contrast, under Assumption 3, my estimator of E[Y (1k,mk)], Ẽ[Y (1k,mk)], converges

to

Ẽ[Y (1k,mk)] =

∫
x

∫
zk

E[Y |x, zk, 1k,mk, uk]
[
dP (uk|x, zk, 1k)

k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x).

I invoke the following three assumptions: (Assumption Ak) αk = E[Y |x, zk, 1k,mk, Uk =

1] − E[Y |x, zk, 1k,mk, Uk = 0] does not depend on (x, zk, 1k,mk); (Assumption Bk) βk =

Pr[Uk = 1|x, zk, 1k,mk] − Pr[Uk = 1|x, zk, 1k]
)
does not depend on (x, zk); Assumption (C)
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Uk is binary. Taking the difference between the quantities in the above two equations thus

gives that, for any mk ∈ {0, 1}, for any k ∈ [K], I have that

bias(Ẽ[Y (1k,mk)]) =

∫ (
E[Y |x, zk, 1k,mk, Uk = 1]− E[Y |x, zk, 1k,mk, Uk = 0]

)
·

(
Pr[Uk = 1|x, zk, 1k,mk]− Pr[Uk = 1|x, zk, 1k]

) k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x).

(18)

Consider first bias(∆k−1) = bias(Ẽ[Y (1k, 0)−Y (1k−1, 0)]). Under mediator monotonicity

(Assumption 1), I immediately have that Pr[Uk = 1|x, zk, 1k,mk]−Pr[Uk = 1|x, zk, 1k]
)
, and

thus that bias(∆k−1) = bias(Ẽ[Y (1k, 0)]), which can be written as

bias(Ẽ[Y (1k, 0)]) =

∫ (
E[Y |x, zk, 1k, 0, Uk = 1]− E[Y |x, zk, 1k, 0, Uk = 0]

)
(
Pr[Uk = 1|x, zk, 1k, 0]− Pr[Uk = 1|x, zk, 1k]

) k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x)

=

∫ (
E[Y |x, zk, 1k, 0, Uk = 1]− E[Y |x, zk, 1k, 0, Uk = 0]

)
·(

Pr[Uk = 1|x, zk, 1k, 0]−
(
Pr[Uk = 1|x, zk, 1k+1]Pr[Mk = 1|x, zk, 1k]

+ Pr[Uk = 1|x, zk, 1k, 0]− Pr[Uk = 1|x, zk, 1k, 0]Pr[Mk = 1|x, zk, 1k]
))

k∏
j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x)

= −
∫ (

E[Y |x, zk, 1k, 0Uk = 1]− E[Y |x, zk, 1k, 0k, Uk = 0]
)
·((

Pr[Uk = 1|x, zk, 1k+1]− Pr[Uk = 1|x, zk, 1k, 0]
)
Pr[Mk = 1|x, zk, 1k]

)
k∏

j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x).

Next, applying assumptions Ak and Bk, I can write
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bias(Ẽ[Y (1k+1, 0)]) = −αkβk

∫
x

∫
zk

Pr[Mk = 1|x, zk, 1k]
k∏

j=1

dP (zj|x, zj−1, 1j−1)
]
dP (x).

Second, to compute bias(τk) = bias(E[Y (1k+1)− Y (1k, 0)]) for any k ∈ {1, . . . K}, begin-

ning with Equation 18 and applying assumptions Ak and Bk once again, I have that

bias(τk) = αkβk.
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